On using the dosimetric leaf gap to model the rounded leaf ends in VMAT/RapidArc plans

نویسندگان

  • Stanislaw Szpala
  • Fred Cao
  • Kirpal Kohli
چکیده

Partial transmission through rounded leaf ends of Varian multileaf collimators (MLC) is accounted for with a parameter called the dosimetric leaf gap (DLG). Verification of the value of the DLG is needed when the dose delivery is accompanied by gantry rotation in VMAT plans. We compared the doses measured with GAFCHROMIC film and an ionization chamber to treatment planning system (TPS) calculations to identify the optimum values of the DLG in clinical plans of the whole brain with metastases transferred to a phantom. We noticed the absence of a single value of the DLG that properly models all VMAT plans in our cohort (the optimum DLG varied between 0.93 ± 0.15 mm and 2.2 ± 0.2 mm). The former value is considerably different from the optimum DLG in sliding window plans (about 2.0 mm) that approximate IMRT plans. We further found that a single-value DLG model cannot accurately reproduce the measured dose profile even of a uniform static slit at a fixed gantry, which is the simplest MLC-delimited field. The calculation overestimates the measurement in the proximal penumbra, while it underestimates in the distal penumbra. This prompted us to expand the DLG parameter from a plan-specific number to a mathematical concept of the DLG being a function of the distance in the beam's eye view (BEV) between the dose point and the leaf ends. Such function compensates for the difference between the penumbras in a beam delimited with a rounded leaf MLC and delimited with solid jaws. Utilization of this concept allowed us generating a pair of step-and-shoot MLC plans for which we could qualitatively predict the value of the DLG providing best match to ionization chamber measurements. The plan for which the leafs stayed predominantly at positions requiring low values of the DLG (as seen in the profiles of 1D slits) yielded the combined DLG of 1.1 ± 0.2 mm, while the plan with leafs staying at positions requiring larger values of the DLG yielded the DLG 2.4 ± 0.2 mm. Considering the DLG to be a function of the distance (in BEV) between the dose point and the leaf ends allowed us to provide an explanation as to why conventional single-number DLG is plan-specific in VMAT plans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs

During volume-modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out-of-field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap ...

متن کامل

Evaluation of fluence‐based dose delivery incorporating the spatial variation of dosimetric leaf gap (DLG)

The Eclipse treatment planning system uses a single dosimetric leaf gap (DLG) value to retract all multileaf collimator leaf positions during dose calculation to model the rounded leaf ends. This study evaluates the dosimetric impact of the 2D variation of DLG on clinical treatment plans based on their degree of fluence modulation. In-house software was developed to retrospectively apply the 2D...

متن کامل

Optimization of the dosimetric leaf gap for use in planning VMAT treatments of spine SABR cases

The dosimetric leaf gap (DLG) is a beam configuration parameter used in the Varian Eclipse treatment planning system, to model the effects of rounded MLC leaf ends. Measuring the DLG using the conventional sliding-slit technique has been shown to be produce questionable results for some volumetric modulated arc therapy (VMAT) treatments. This study therefore investigated the use of radiochromic...

متن کامل

Determining the optimal dosimetric leaf gap setting for rounded leaf‐end multileaf collimator systems by simple test fields

Individual QA for IMRT/VMAT plans is required by protocols. Sometimes plans cannot pass the institute's QA criteria. For the Eclipse treatment planning system (TPS) with rounded leaf-end multileaf collimator (MLC), one practical way to improve the agreement of planned and delivered doses is to tune the value of dosimetric leaf gap (DLG) in the TPS from the measured DLG. We propose that this ste...

متن کامل

The Dosimetric Effects of Different Multileaf Collimator Widths on Physical Dose Distributions

Introduction: Geometric changes in the multileaf collimator (MLC) led to dosimetric considerations in intensity-modulated radiation therapy (IMRT) due to the number and size of the pixels in the intensity map, which are determined by the MLC leaf width. In this study, we evaluated the dosimetric effects of different MLC widths on physical dose distributions for IMRT plans. Materials and Method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014