Sports Med 2003; 33 (5): 381-394
نویسندگان
چکیده
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381 1. Characterisational Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 1.1 Insulin-Like Growth Factor-I (IGF-I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383 1.2 Transforming Growth Factor β (TGFβ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385 1.3 Vascular Endothelial Growth Factor (VEGF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386 1.4 Platelet-Derived Growth Factor (PDGF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 1.5 Basic Fibroblast Growth Factor (bFGF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387 2. In Vivo Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 2.1 IGF-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388 2.2 TGFβ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 2.3 PDGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389 2.4 bFGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390 3. Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392 Tendon healing is a complex and highly-regulated process that is initiated, Abstract sustained and eventually terminated by a large number and variety of molecules. Growth factors represent one of the most important of the molecular families involved in healing, and a considerable number of studies have been undertaken in an effort to elucidate their many functions. This review covers some of the recent investigations into the roles of five growth factors whose activities have been best characterised during tendon healing: insulin-like growth factor-I (IGF-I), transforming growth factor β (TGFβ), vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF). All five are markedly up-regulated following tendon injury and are active at multiple stages of the healing process. IGF-I has been shown to be highly expressed during the early inflammatory phase in a number of animal tendon healing models, and appears to aid in the proliferation and migration of fibroblasts and to subsequently increase collagen production. TGFβ is also active during inflammation, and has a variety of effects including the regulation of cellular migration and proliferation, and fibronectin binding interactions. VEGF is produced at its highest levels only after the inflammatory phase, at which time it is a powerful stimulator of angiogenesis. PDGF is produced shortly after tendon
منابع مشابه
تاثیر تمرینات عصبی- عضلانی، قدرتی و ترکیبی بر نسبت قدرت همسترینگ به چهارسر در زنان بسکتبالیست
Background and Objective: Researchers have pointed out that higher rate of female athlete lower extremity injuries are related to functional imbalances in hamstring and quadriceps muscles and suggest the use of training protocols in order to gain adequate functional muscle patterns. The aim of this research was to investigate the effect of neuromuscular, strength and combined trainings on H/Q s...
متن کاملSEMAC and MAVRIC for Artifact-Corrected MR Imaging around Metal in the Knee
Figure 4: Model created from segmentation of femoral TKR component from SEMAC images. REFERENCES 1. Wendt RE et al., Radiology 1988;168:837-41. 2. Sofka et al., Semin Musculoskel Radiol 2002;6:79-85. 3. Lu W et al., Magn Res Med 2009;62(1):66-76. 4. Koch KM et al., Magn Reson Med 2009;61(2):381-90. 5. Jee et al., Am J Roentgenol 2003;180:93-7. 6. Hennig J., Magn Reson Med 1986;3(6):823-33. 7. B...
متن کاملRunning head: TRANSFORMATIONAL LEADERSHIP AND TASK COHESION
24 In this cross-sectional study, we examined a mediational model whereby transformational 25 leadership is related to task cohesion via sacrifice. Participants were 381 American (Mage = 26 19.87, SD = 1.41) Division I university athletes (188 males, 193 females) who competed in a 27 variety of sports. Participants completed measures of coach transformational leadership, 28 personal and teammat...
متن کاملRunning head: TRANSFORMATIONAL LEADERSHIP AND TASK COHESION
24 In this cross-sectional study, we examined a mediational model whereby transformational 25 leadership is related to task cohesion via sacrifice. Participants were 381 American (Mage = 26 19.87, SD = 1.41) Division I university athletes (188 males, 193 females) who competed in a 27 variety of sports. Participants completed measures of coach transformational leadership, 28 personal and teammat...
متن کامل