Distinct stages of synapse elimination are induced by burst firing of CA1 neurons and differentially require MEF2A/D
نویسندگان
چکیده
Experience and activity refine cortical circuits through synapse elimination, but little is known about the activity patterns and downstream molecular mechanisms that mediate this process. We used optogenetics to drive individual mouse CA1 hippocampal neurons to fire in theta frequency bursts to understand how cell autonomous, postsynaptic activity leads to synapse elimination. Brief (1 hr) periods of postsynaptic bursting selectively depressed AMPA receptor (R) synaptic transmission, or silenced excitatory synapses, whereas more prolonged (24 hr) firing depressed both AMPAR and NMDAR EPSCs and eliminated spines, indicative of a synapse elimination. Both synapse silencing and elimination required de novo transcription, but only silencing required the activity-dependent transcription factors MEF2A/D. Burst firing induced MEF2A/D-dependent induction of the target gene Arc which contributed to synapse silencing and elimination. This work reveals new and distinct forms of activity and transcription-dependent synapse depression and suggests that these processes can occur independently.
منابع مشابه
Effect of Sulpiride on Dopaminergic Synapse of Dorsal Hippocampus of Morphine-Treated Rats
Background: As previous studies show, several effects of morphine are induced by the dopaminergic system. Sulpiride is a dopamine D2 receptor (DAD2) antagonist widely used in clinics to treat DArelated disorders. DAD2 receptors are abundant at hippocampal cornu ammonis (CA1). Objectives: This study aimed to investigate the possible interaction of morphine and sulpiride on DA synapses in CA1...
متن کاملGABA(A) and GABA(B) antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo.
The effects of local pressure application of the selective GABA(A) antagonists, bicuculline, gabazine, and picrotoxin, and the selective GABA(B) antagonists, 2-OH-saclofen and CGP-55845A, on the spontaneous activity of electrophysiologically identified substantia nigra dopaminergic neurons were recorded in vivo in urethane anesthetized rats. Blockade of GABA(A) inputs by bicuculline powerfully ...
متن کاملNeuroprotective effect of minocycline on PTZ-induced epileptiform activity and alterations of the shape of action potentials in snail neurons assessed by using intracellular recordings
Introduction: Epilepsy is a neurological disorder that affects 1-2% of the world population and about 30% of patients are resistant to antiepileptic drug therapy. Therefore, new treatment alternatives are needed. In the present study, the possible neuroprotective effect of minocycline against epileptiform activity induced by pentylenetetrazole (PTZ) was assessed. Methods: Conventional intra...
متن کاملEffects of Memantine on the Spontaneous Firing Frequency of Hippocampal CA1 Pyramidal Neurons in Intact and Alzheimer Rat Model: An Electrophysiological Study
Introduction: Memantine (MEM) is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically used for the treatment of Alzheimer disease (AD) in mild to severe conditions. The present study was conducted to investigate the effects of memantine on the spontaneous firing frequency of CA1 pyramidal neurons in rats caused by an electrical lesion of Nucleus Basalis Magnocellularis (...
متن کاملResting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
Action potentials are the end product of synaptic integration, a process influenced by resting and active neuronal membrane properties. Diversity in these properties contributes to specialized mechanisms of synaptic integration and action potential firing, which are likely to be of functional significance within neural circuits. In the hippocampus, the majority of subicular pyramidal neurons fi...
متن کامل