Spaces of Local Vector Fields

نویسندگان

  • J. C. BECKER
  • D. H. GOTTLIEB
چکیده

Vector fields defined only over a part of a manifold give rise to indexes and to transfers. These local vector fields form a topological space whose relation to configuration spaces was studied by Dusa McDuff, and whose higher dimensional homotopy and homology promise invariants of parametrized families of local vector fields. We show that the assignment of the transfer to the vector field gives a map from the space of local vector fields of M into Q(M+) which stablizes into a homotopy equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOCAL BASES WITH STRATIFIED STRUCTURE IN $I$-TOPOLOGICAL VECTOR SPACES

In this paper, the concept of {sl local base with  stratifiedstructure} in $I$-topological vector spaces is introduced. Weprove that every $I$-topological vector space has a balanced localbase with stratified structure. Furthermore, a newcharacterization of $I$-topological vector spaces by means of thelocal base with stratified structure is given.

متن کامل

ON LOCAL BOUNDEDNESS OF I-TOPOLOGICAL VECTOR SPACES

The notion of generalized locally bounded $I$-topological vectorspaces is introduced. Some of their important properties arestudied. The relationship between this kind of spaces and thelocally bounded $I$-topological vector spaces introduced by Wu andFang [Boundedness and locally bounded fuzzy topological vectorspaces, Fuzzy Math. 5 (4) (1985) 87$-$94] is discussed. Moreover, wealso use the fam...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Regularity Estimates for Convex Functions in Carnot-carathéodory Spaces

We prove some first order regularity estimates for a class of convex functions in Carnot-Carathéodory spaces, generated by Hörmander vector fields. Our approach relies on both the structure of metric balls induced by Hörmander vector fields and local upper estimates for the corresponding subharmonic functions.

متن کامل

2 00 7 Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997