Uniqueness of Optimal Mod 3 Circuits for Parity
نویسندگان
چکیده
In this paper, we prove that the quadratic polynomials modulo 3 with the largest correlation with parity are unique up to permutation of variables and constant factors. As a consequence of our result, we completely characterize the smallest MAJ◦ MOD3 ◦ AND2 circuits that compute parity, where a MAJ ◦MOD3 ◦ AND2 circuit is one that has a majority gate as output, a middle layer of MOD3 gates and a bottom layer of AND gates of fan-in 2. We also prove that the sub-optimal circuits exhibit a stepped behavior: any sub-optimal circuits of this class that compute parity must have size at least a factor of 2 √ 3 times the optimal size. This verifies, for the special case of m = 3, two conjectures made in [5] for general MAJ ◦MODm ◦AND2 circuits for any odd m. The correlation and circuit bounds are obtained by studying the associated exponential sums, based on some of the techniques developed in [7].
منابع مشابه
Uniqueness of Optimal Mod 3 Polynomials for Parity
In this paper, we completely characterize the quadratic polynomials modulo 3 with the largest (hence “optimal”) correlation with parity. This result is obtained by analysis of the exponential sum
متن کاملReversible Logic Multipliers: Novel Low-cost Parity-Preserving Designs
Reversible logic is one of the new paradigms for power optimization that can be used instead of the current circuits. Moreover, the fault-tolerance capability in the form of error detection or error correction is a vital aspect for current processing systems. In this paper, as the multiplication is an important operation in computing systems, some novel reversible multiplier designs are propose...
متن کاملThe Correlation Between Parity and Quadratic Polynomials
We prove exponentially small upper bounds on the correlation between parity and quadratic polynomials mod 3. One corollary of this is that in order to compute parity, circuits consisting of a threshold gate at the top, mod 3 gates in the middle, and AND gates of fan-in two at the inputs must be of size 2. This is the first result of this type for general mod 3 subcircuits with ANDs of fan-in gr...
متن کاملSize and Energy of Threshold Circuits Computing Mod Functions
Let C be a threshold logic circuit computing a Boolean function MODm : {0, 1}n → {0, 1}, where n ≥ 1 and m ≥ 2. Then C outputs “0” if the number of “1”s in an input x ∈ {0, 1}n to C is a multiple of m and, otherwise, C outputs “1.” The function MOD2 is the so-called PARITY function, and MODn+1 is the OR function. Let s be the size of the circuit C, that is, C consists of s threshold gates, and ...
متن کاملThe Correlation Between Parity and Quadratic Polynomials Mod 3
We prove exponentially small upper bounds on the correlation between parity and quadratic polynomials mod 3: One corollary of this is that in order to compute parity, circuits consisting of a threshold gate at the top, mod 3 gates in the middle, and AND gates of fan-in two at the inputs must be of size 2OðnÞ: This is the first result of this type for general mod 3 subcircuits with ANDs of fan-i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007