Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus.

نویسنده

  • J H McDonald
چکیده

Asymmetrical patterns of amino acid substitution in proteins of organisms living at moderate and high temperatures (mesophiles and thermophiles, respectively) are generally taken to indicate selection favoring different amino acids at different temperatures due to their biochemical properties. If that were the case, comparisons of different pairs of mesophilic and thermophilic taxa would exhibit similar patterns of substitutional asymmetry. A previous comparison of mesophilic versus thermophilic Methanococcus with mesophilic versus thermophilic Bacillus revealed several pairs of amino acids for which one amino acid was favored in thermophilic Bacillus and the other was favored in thermophilic Methanococcus. Most of this could be explained by the higher G+C content of the DNA of thermophilic Bacillus, a phenomenon not seen in the Methanococcus comparison. Here, I compared the mesophilic bacterium Deinococcus radiodurans and its thermophilic relative Thermus thermophilus, which are similar in G+C content. Of the 190 pairs of amino acids, 83 exhibited significant substitutional asymmetry, consistent with the pervasive effects of selection. Most of these significantly asymmetrical pairs of amino acids were asymmetrical in the direction predicted from the Methanococcus data, consistent with thermal adaptation resulting from universal biochemical properties of the amino acids. However, 12 pairs of amino acids exhibited asymmetry significantly different from and in the opposite direction of that found in the Methanococcus comparison, and 21 pairs of amino acids exhibited asymmetry that was significantly different from that found in the Bacillus comparison and could not be explained by the greater G+C content in thermophilic Bacillus. This suggests that selection due to universal biochemical properties of the amino acids and differences in G+C content are not the only causes of substitutional asymmetry between mesophiles and thermophiles. Instead, selection on taxon-specific properties of amino acids, such as their metabolic cost, may play a role in causing asymmetrical patterns of substitution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carotenoid biosynthesis in extremophilic Deinococcus-Thermus bacteria.

Bacteria from the phylum Deinococcus-Thermus are known for their resistance to extreme stresses including radiation, oxidation, desiccation and high temperature. Cultured Deinococcus-Thermus bacteria are usually red or yellow pigmented because of their ability to synthesize carotenoids. Unique carotenoids found in these bacteria include deinoxanthin from Deinococcus radiodurans and thermozeaxan...

متن کامل

Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum.

The members of the Deinococcus-Thermus phylum, which include many species that are resistant to extreme radiation, as well as several thermophiles, have been recognized solely on the basis of their branching patterns in 16S rRNA and other phylogenetic trees. No biochemical or physiological characteristic is currently known that is unique to this group of species. To identify genes/proteins that...

متن کامل

Genome Signature Difference between Deinococcus radiodurans and Thermus thermophilus

The extremely radioresistant bacteria of the genus Deinococcus and the extremely thermophilic bacteria of the genus Thermus belong to a common taxonomic group. Considering the distinct living environments of Deinococcus and Thermus, different genes would have been acquired through horizontal gene transfer after their divergence from a common ancestor. Their guanine-cytosine (GC) contents are si...

متن کامل

Genomic adaptation of prokaryotic organisms at high temperature

One of the central issues of evolutionary genomics is to find out the adaptive strategies of microorganisms to stabilize nucleic acid molecules under high temperature. Thermal adaptation hypothesis gives a link between G+C content and growth temperature if there is a considerable variation of guanine and cytosine content between species. However, there has been a long-standing debate regarding ...

متن کامل

The Complete Genome and Proteome of Laribacter hongkongensis Reveal Potential Mechanisms for Adaptations to Different Temperatures and Habitats

Laribacter hongkongensis is a newly discovered Gram-negative bacillus of the Neisseriaceae family associated with freshwater fish-borne gastroenteritis and traveler's diarrhea. The complete genome sequence of L. hongkongensis HLHK9, recovered from an immunocompetent patient with severe gastroenteritis, consists of a 3,169-kb chromosome with G+C content of 62.35%. Genome analysis reveals differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2001