Geoid Data and Thermal Structure of the Oceanic Lithosphere

نویسندگان

  • W. Philip Richardson
  • Seth Stein
  • Maria T. Zuber
چکیده

A long-standing question is whether old oceanic lithosphere continues cooling as the boundary layer of a halfspace or approaches thermal equilibrium, as modeled by a finite thickness plate. Although the latter is the most direct inference from seafloor depths and heat flow, other explanations have been proposed. We investigate this issue using published results for the derivative of the oceanic geoid with age estimated from geoid offsets across fracture zones. Such data have not been used extensively in analyses of the thermal evolution of the lithosphere, primarily because they are inconsistent with two commonly used thermal models: a halfspace or a 125-km-thick plate. Recent studies, however, find that depth and heat flow data are better fit by a thinner (95 kin) plate model. We thus compile published geoid slope results, and find that these data, though scattered, can discriminate between the models. Geoid slope changes with age, rather than being constant as predicted for a cooling halfspace. This variation is greater than predicted for a thick plate and is better fit by a thin plate. Geoid data should thus be useful for improving thermal models of the lithosphere.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convection Beneath Young Oceanic Lithosphere: Implications for Thermal Structure and Gravity

Small-scale convection under the oceanic lithosphere which begins in the first 5 m.y. of cooling can produce a gravity signal with the amplitude and wavelength observed for large areas of the central Pacific and southern Indian oceans using Seasat altimeter data. The trend of the observed anomalies is parallel to the direction of plate motion as might be expected if they were produced by small-...

متن کامل

The Relationship between Plate Curvature and Elastic Plate Thickness: a Study of the Peru-chile Trench

The age of the Nazca plate where it enters the Peru and northern Chile trenches varies from 30 Ma in the north to 45 Ma in the south as its dip beneath the South American continent steepens from 13' to 300. If the elastic thickness Te of oceanic lithosphere depends only on its age, and therefore thermal state, we would expect that Te determined from fitting the flexure of the lithosphere over t...

متن کامل

The Effects of Dynamic Topography and Thermal Isostasy on the Topogra- Phy and Geoid of Venus

Introduction: The Venusian geoid, gravity field, and topography have been used in a variety of applications and are the primary sources of information about the internal structure of the planet. We focus on the relationship between the geoid and topography to determine both the support mechanism for the topography and lithospheric density structure. Magnitude of Dynamic Topography: The long-wav...

متن کامل

Free-surface formulation of mantle convection-11. Implication for subduction-zone observables

Viscous and viscoelastic models for a subduction zone with a faulted lithosphere and internal buoyancy can self-consistently and simultaneously predict long-wavelength geoid highs over slabs, short-wavelength gravity lows over trenches, trench-forebulge morphology, and explain the high apparent strength of oceanic lithosphere in trench environments. The models use two different free-surface for...

متن کامل

Small-scale Convection and the Evolution of the Lithosphere

In this thesis we calculate the effect of small-scale convection on the thickness and temperature structure of the lithosphere for three cases where geophysical and geological data may allow us to see these effects. The problems are: (1) the cooling of the oceanic lithosphere; (2) the cooling of a passive rift temperature structure; and (3) the rate of thinning of lithosphere which has been thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007