Inter-dependent apical microtubule and actin dynamics orchestrate centrosome retention and neuronal delamination
نویسندگان
چکیده
Detachment of newborn neurons from the neuroepithelium is required for correct neuronal architecture and functional circuitry. This process, also known as delamination, involves adherens-junction disassembly and acto-myosin-mediated abscission, during which the centrosome is retained while apical/ciliary membranes are shed. Cell-biological mechanisms mediating delamination are, however, poorly understood. Using live-tissue and super-resolution imaging, we uncover a centrosome-nucleated wheel-like microtubule configuration, aligned with the apical actin cable and adherens-junctions within chick and mouse neuroepithelial cells. These microtubules maintain adherens-junctions while actin maintains microtubules, adherens-junctions and apical end-foot dimensions. During neuronal delamination, acto-myosin constriction generates a tunnel-like actin-microtubule configuration through which the centrosome translocates. This movement requires inter-dependent actin and microtubule activity, and we identify drebrin as a potential coordinator of these cytoskeletal dynamics. Furthermore, centrosome compromise revealed that this organelle is required for delamination. These findings identify new cytoskeletal configurations and regulatory relationships that orchestrate neuronal delamination and may inform mechanisms underlying pathological epithelial cell detachment.
منابع مشابه
GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction.
Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature centrioles and participates in centriole dynamics and centrosome disjunction. GAS2L1 attaches microtub...
متن کاملMicrotubule stabilization drives 3D centrosome migration to initiate primary ciliogenesis.
Primary cilia are sensory organelles located at the cell surface. Their assembly is primed by centrosome migration to the apical surface, yet surprisingly little is known about this initiating step. To gain insight into the mechanisms driving centrosome migration, we exploited the reproducibility of cell architecture on adhesive micropatterns to investigate the cytoskeletal remodeling supportin...
متن کاملCasein kinase II is required for proper cell division and acts as a negative regulator of centrosome duplication in Caenorhabditis elegans embryos
Centrosomes are the primary microtubule-organizing centers that orchestrate microtubule dynamics during the cell cycle. The correct number of centrosomes is pivotal for establishing bipolar mitotic spindles that ensure accurate segregation of chromosomes. Thus, centrioles must duplicate once per cell cycle, one daughter per mother centriole, the process of which requires highly coordinated acti...
متن کاملSymmetric and asymmetric mitotic segregation patterns influence Wolbachia distribution in host somatic tissue.
Wolbachia are maternally inherited bacterial endosymbionts that occupy many but not all tissues of adult insects. During the initial mitotic divisions in Drosophila embryogenesis, Wolbachia exhibit a symmetric pattern of segregation. Wolbachia undergo microtubule-dependent and cell-cycle-regulated movement between centrosomes. Symmetric segregation occurs during late anaphase when Wolbachia clu...
متن کاملFormins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse.
T cell receptor (TCR)-mediated cytoskeletal reorganization is considered to be actin-related protein (Arp) 2/3 complex dependent. We therefore examined the requirement for Arp2/3- and formin-dependent F-actin nucleation during T cell activation. We demonstrated that without Arp2/3-mediated actin nucleation, stimulated T cells could not form an F-actin-rich lamellipod, but instead produced polar...
متن کامل