Approximation of Solutions and Derivatives for Singularly Perturbed Elliptic Convection-Diffusion Equations

نویسنده

  • G. I. Shishkin
چکیده

In this paper we consider mesh approximations of a boundary value problem for singularly perturbed elliptic equations of convection-diffusion type on a strip. To approximate the equations, we use classical finite difference approximations on piecewise-uniform meshes condensing in a neighbourhood of the boundary layer. The approximation errors of solutions and derivatives are analysed in the ρ-metric. In this metric the error of a solution is defined by an absolute error, while the error of its derivative (∂/∂x1)u(x), i.e. the derivative in the direction across of the boundary layer, is defined by the relative error in that part of the domain where the derivative is large, and by the absolute error in the remainder part of the domain. It is shown that in the class of meshes, whose stepsize in the boundary layer does not decrease with moving away from the outflow boundary, there are no meshes on which the scheme converges ε-uniformly in the ρ-metric. We establish conditions, imposed on the distribution of the nodes of piecewise uniform meshes, under which the scheme converges in the ρ-metric ε-uniformly up to a logarithmic factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

Numerical Approximation of Two-dimensional Convection-diffusion Equations with Multiple Boundary Layers

In this article, we demonstrate how one can improve the numerical solution of singularly perturbed problems involving multiple boundary layers by using a combination of analytic and numerical tools. Incorporating the structures of boundary layers into finite element spaces can improve the accuracy of approximate solutions and result in significant simplifications. We discuss here convection-dif...

متن کامل

Multiscale Numerical Methods for Singularly Perturbed Convection-diffusion Equations

We present an efficient and robust approach in the finite element framework for numerical solutions that exhibit multiscale behavior, with applications to singularly perturbed convection-diffusion problems. The first type of equation we study is the convectiondominated convection-diffusion equation, with periodic or random coefficients; the second type of equation is an elliptic equation with s...

متن کامل

Parameter-uniform finite difference schemes for singularly perturbed parabolic diffusion-convection-reaction problems

In this paper, parameter-uniform numerical methods for a class of singularly perturbed parabolic partial differential equations with two small parameters on a rectangular domain are studied. Parameter-explicit theoretical bounds on the derivatives of the solutions are derived. The solution is decomposed into a sum of regular and singular components. A numerical algorithm based on an upwind fini...

متن کامل

Discrete approximations for singularly perturbed boundary value problems with parabolic layers

REPORTRAPPORT Discrete approximations for singularly perturbed boundary value problems with parabolic layers Abstract Singularly perturbed boundary value problems for equations of elliptic and parabolic type are studied. For small values of the perturbation parameter, parabolic boundary layers appear in these problems. If classical discretisation methods are used, the solution of the nite diier...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001