The complex role of nitric oxide under physiologic versus septic conditions
نویسندگان
چکیده
versus septic conditions Physiology Nitric oxide (NO), a small endogenously produced molecule with a very short half-life, has been extensively characterized under physiologic and pathophysiologic conditions and also may represent a therapeutic target. NO synthesis via oxidation of L-arginine is catalyzed by diff erent NO synthases (NOSs). Within the three isoforms, the constitutively expressed neuronal NOS (nNOS) and endothelial NOS (eNOS) are regulated by calcium/calmodulin and post-translational modifi cations whereas the expression of inducible NOS (iNOS) is stimulated by pro-infl ammatory cytokines such as interferon-gamma or tumor necrosis factor-alpha. Released by endothelial cells, NO increases blood fl ow by relaxing vascular smooth muscle cells, modulating platelet aggregation and leukocyte-endothelial interactions [1], and reducing synthesis of pro-infl ammatory cytokines [2]. In addition, NO-derived radicals play an important role in the host immune defense against infections by killing phagocytosed microorganisms [3]. Apart from its enzymatic synthesis, NO can be released from S-nitrosohemoglobin with an increased effi ciency under conditions of low oxygen tension, explaining hypoxic vasodilation aimed at increasing regional blood fl ow [4]. In addition, the main reservoir for NO in human plasma is S-nitroso-serum albumin, which allows NOmediated regulation of vascular tone [5].
منابع مشابه
Effects of lipopolysaccharide-induced septic shock on rat isolated kidney, possible role of nitric oxide and protein kinase C pathways
Objective(s): Pathophysiology of sepsis-associated renal failure (one of the most common cause of death in intensive care units) had not been fully determined. The effect of nitric oxide and protein kinase C (PKC) pathways in isolated kidney of Lipopolysaccharide-treated (LPS) rats were investigated in this study. Materials and Methods: Vascular responsiveness to phenylephrine and acetylcholine...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric oxide and the bioactivities
Nitric oxide (NO), previously known as Endothelium-Derived Relaxing Factor (EDRF) is involved in a wide range of physiological and pathophysiological mechanisms. It is synthesized endogenously by the enzymes Nitric Oxide Synthase (NOS) in specialized tissues from its precursor L-arginine, yielding L-citrulline as a byproduct. It is released by a family of isoenzymes, viz., the endothelial (eNOS...
متن کاملNitric Oxide Functions; an Emphasis on its Diversity in Infectious Diseases
Nitric oxide is a short-lived mediator, which can be induced in a variety of cell types and produces many physiologic and metabolic changes in target cells. It is important in many biological functions and generated from L-arginine by the enzyme nitric oxide synthase. Nitric oxide conveys a variety of messages between cells, including signals for vasorelaxation, neurotransmission and cytotoxici...
متن کاملDiscordance between microvascular permeability and leukocyte dynamics in septic inducible nitric oxide synthase deficient mice
INTRODUCTION Microvascular dysfunction causing intravascular leakage of fluid and protein contributes to hypotension and shock in sepsis. We tested the hypothesis that abrogation of inducible nitric oxide synthase (iNOS) activation would decrease leukocyte rolling, leukocyte adhesion, and microvascular leakage in sepsis. We compared wild-type mice made septic by cecal ligation and puncture with...
متن کامل