Cell contraction forces in scaffolds with varying pore size and cell density.

نویسندگان

  • Karolina A Corin
  • Lorna J Gibson
چکیده

The contractile behavior of cells is relevant in understanding wound healing and scar formation. In tissue engineering, inhibition of the cell contractile response is critical for the regeneration of physiologically normal tissue rather than scar tissue. Previous studies have measured the contractile response of cells in a variety of conditions (e.g. on two-dimensional solid substrates, on free-floating tissue engineering scaffolds and on scaffolds under some constraint in a cell force monitor). Tissue engineering scaffolds behave mechanically like open-cell elastomeric foams: between strains of about 10 and 90%, cells progressively buckle struts in the scaffold. The contractile force required for an individual cell to buckle a strut within a scaffold has been estimated based on the strut dimensions (radius, r, and length, l) and the strut modulus, E(s). Since the buckling force varies, according to Euler's law, with r(4)/l(2), and the relative density of the scaffold varies as (r/l)(2), the cell contractile force associated with strut buckling is expected to vary with the square of the pore size for scaffolds of constant relative density. As the cell density increases, the force per cell to achieve a given strain in the scaffold is expected to decrease. Here we model the contractile response of fibroblasts by analyzing the response of a single tetrakaidecahedron to forces applied to individual struts (simulating cell contractile forces) using finite element analysis. We model tetrakaidecahedra of different strut lengths, corresponding to different scaffold pore sizes, and of varying numbers of loaded struts, corresponding to varying cell densities. We compare our numerical model with the results of free-floating contraction experiments of normal human dermal fibroblasts (NHDF) in collagen-GAG scaffolds of varying pore size and with varying cell densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تأثیر سایز حفرات داربست‌های کیتوزان- ژلاتین در اتصال سلول‌های اپیتلیال پردۀ آمنیون به منظور کاربرد در مهندسی بافت

Abstract Background: The amniotic membrane has gained much attention in regenerative medicine as a precious cell source. Recently, reparation of three dimensional matrices (scaffold) with appropriate specificity for cell culture, which depends on cell type, has been the subject of many studies .This study aimed to design optimal three-dimensional matrices in order to utilize amniotic epithel...

متن کامل

ارزیابی ساختاری و مکانیکی داربست گرادیانی پلی کاپرولاکتون به‌منظور کاربرد در مهندسی بافت استخوان

In gradient scaffolds, changes in porosity, pore size or chemical composition occur gradually. Recently, different  methods have been applied to create gradient in the scaffolds, but they have some disadvantages such as high cost and control. The main purpose of this research was to fabricate porous gradient scaffolds by a novel, functional, simple, and low-cost method. Two homogenous scaffolds...

متن کامل

Biologically active collagen-based scaffolds: advances in processing and characterization.

A small number of type I collagen-glycosaminoglycan scaffolds (collagen-GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound cont...

متن کامل

Fabrication of Porous Hydroxyapatite-Gelatin Composite Scaffolds for Bone Tissue Engineering

Background: engineering new bone tissue with cells and a synthetic extracellular matrix represents a new approach for the regeneration of mineralized tissues compared with the transplantation of bone (autografts or allografts). Methods: in this study, to mimic the mineral and organic component of natural bone, hydroxapatite (HA) and gelatin (GEL) composite scaffolds were prepared. The raw mater...

متن کامل

The effect of pore size on cell adhesion in collagen-GAG scaffolds.

The biological activity of scaffolds used in tissue engineering applications hypothetically depends on the density of available ligands, scaffold sites at which specific cell binding occurs. Ligand density is characterized by the composition of the scaffold, which defines the surface density of ligands, and by the specific surface area of the scaffold, which defines the total surface of the str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 31 18  شماره 

صفحات  -

تاریخ انتشار 2010