Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods

نویسندگان

  • Maximilian B Maier
  • Christian A Lenz
  • Rudi F Vogel
چکیده

The effect of high pressure thermal (HPT) processing on the inactivation of spores of proteolytic type B Clostridium botulinum TMW 2.357 in four differently composed low-acid foods (green peas with ham, steamed sole, vegetable soup, braised veal) was studied in an industrially feasible pressure range and temperatures between 100 and 120°C. Inactivation curves exhibited rapid inactivation during compression and decompression followed by strong tailing effects. The highest inactivation (approx. 6-log cycle reduction) was obtained in braised veal at 600 MPa and 110°C after 300 s pressure-holding time. In general, inactivation curves exhibited similar negative exponential shapes, but maximum achievable inactivation levels were lower in foods with higher fat contents. At high treatment temperatures, spore inactivation was more effective at lower pressure levels (300 vs. 600 MPa), which indicates a non-linear pressure/temperature-dependence of the HPT spore inactivation efficiency. A comparison of spore inactivation levels achievable using HPT treatments versus a conventional heat sterilization treatment (121.1°C, 3 min) illustrates the potential of combining high pressures and temperatures to replace conventional retorting with the possibility to reduce the process temperature or shorten the processing time. Finally, experiments using varying spore inoculation levels suggested the presence of a resistant fraction comprising approximately 0.01% of a spore population as reason for the pronounced tailing effects in survivor curves. The loss of the high resistance properties upon cultivation indicates that those differences develop during sporulation and are not linked to permanent modifications at the genetic level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High pressure thermal inactivation of Clostridium botulinum type E endospores – kinetic modeling and mechanistic insights

Cold-tolerant, neurotoxigenic, endospore forming Clostridium (C.) botulinum type E belongs to the non-proteolytic physiological C. botulinum group II, is primarily associated with aquatic environments, and presents a safety risk for seafood. High pressure thermal (HPT) processing exploiting the synergistic effect of pressure and temperature can be used to inactivate bacterial endospores. We inv...

متن کامل

High-pressure-mediated survival of Clostridium botulinum and Bacillus amyloliquefaciens endospores at high temperature.

Endospores of proteolytic type B Clostridium botulinum TMW 2.357 and Bacillus amyloliquefaciens TMW 2.479 are currently described as the most high-pressure-resistant bacterial spores relevant to food intoxication and spoilage in combined pressure-temperature applications. The effects of combined pressure (0.1 to 1,400 MPa) and temperature (70 to 120 degrees C) treatments were determined for the...

متن کامل

A Neural Model of Time to Toxin Production by Non-Proteolytic Clostridium botulinum

Clostridium botulinum is a bacterium present in the raw ingredients of many foods. It produces a powerful neurotoxin as part of its growth process, that can prove fatal when doses as small as a few micrograms are consumed. It is therefore vital to be able to accurately determine the food processing and storage conditions where toxin production is prevented. This paper describes a new model of t...

متن کامل

Characterization of Clostridium botulinum spores and its toxin in honey

Botulism is a serious paralytic disease caused by Clostridium botulinum toxin in foods. There are seven recognized serotypes of botulinum neurotoxins among which the principal prevalent types in humans include A, B and E. Infant botulism results from intestinal colonization and toxin production by C. botulinum spores in babies less than 1 year old. Honey is the most important food discriminated...

متن کامل

High hydrostatic pressure-induced inactivation of bacterial spores.

High hydrostatic pressure (HHP) is the most-widely adopted novel non-thermal technology for the commercial pasteurization of foods. However, HHP-induced inactivation of bacterial spores remains a challenge due to spore resistance to the treatment limits of currently available industrial HHP units (i.e. ~650 MPa and 50 °C). Several reports have demonstrated that high pressure can modulate the ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017