Universality of vibrational spectra of globular proteins.
نویسندگان
چکیده
It is shown that the density of modes of the vibrational spectrum of globular proteins is universal, i.e. regardless of the protein in question, it closely follows one universal curve. The present study, including 135 proteins analyzed with a full atomic empirical potential (CHARMM22) and using the full complement of all atoms Cartesian degrees of freedom, goes far beyond previous claims of universality, confirming that universality holds even in the frequency range that is well above 100 cm(-1) (300-4000 cm(-1)), where peaks and turns in the density of states are faithfully reproduced from one protein to the next. We also characterize fluctuations of the spectral density from the average, paving the way to a meaningful discussion of rare, unusual spectra and the structural reasons for the deviations in such 'outlier' proteins. Since the method used for the derivation of the vibrational modes (potential energy formulation, set of degrees of freedom employed, etc) has a dramatic effect on the spectral density, another significant implication of our findings is that the universality can provide an exquisite tool for assessing and improving the quality of potential functions and the quality of various models used for NMA computations. Finally, we show that the input configuration also affects the density of modes, thus emphasizing the importance of simplified potential energy formulations that are minimized at the outset. In summary, our findings call for a serious two-way dialogue between theory and experiment: experimental spectra of proteins could now guide the fine tuning of theoretical empirical potentials, and the various features and peaks observed in theoretical studies--being universal, and hence now rising in importance--would hopefully spur experimental confirmation.
منابع مشابه
Low-frequency modes of peptides and globular proteins in solution observed by ultrafast OHD-RIKES spectroscopy.
The low-frequency (1-200 cm(-1)) vibrational spectra of peptides and proteins in solution have been investigated with ultrafast optical heterodyne-detected Raman-induced Kerr-effect spectroscopy (OHD-RIKES). Spectra have been obtained for di-L-alanine (ALA(2)) and the alpha-helical peptide poly-L-alanine (PLA) in dichloroacetic acid solution. The poly-L-alanine spectrum shows extra amplitude co...
متن کاملTheoretical Studies of the Vibrational Spectra and Molecular Structures of Dosulepin and Doxepin
Dosulepin and doxepin are tricyclic antidepressants. The molecular geometries, harmonic vibrational frequencies, quantum chemical parameters and thermodynamic properties of dosulepin and doxepin were calculated by Generalized Gradient Approximation methods developed by Perdew and Wang (GGA-PW91) and Becke-Lee-Yang-Parr (GGA-BLYP) in the gas phase and solution media. The local reactivity of thes...
متن کاملGlasslike structure of globular proteins and the boson peak.
Vibrational spectra of proteins and topologically disordered solids display a common anomaly at low frequencies, known as boson peak. We show that such feature in globular proteins can be deciphered in terms of an energy landscape picture, as it is for glassy systems. Exploiting the tools of Euclidean random matrix theory, we clarify the physical origin of such anomaly in terms of a mechanical ...
متن کاملNMR and vibrational spectra of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2- b][1,2,4]triazine-4,8-dione: a joint of experimental and DFT
The IR and NMR spectra were coupled with quantum chemical calculations in DFT approach usingthe hybrid B3LYP exchange-correlation functional to confirm the structure of 2-methoxycarbonyl-7-methyl-1,3-thiazino[3,2-b][1,2,4]triazine-4,8-dione 2d.
متن کاملAB Initio Study of Molecular Struture, Energetic and Vibrational Spectra of (GaN)4 Nanosemiconductor
In recent years there has been considerable interest in the structures, energies and thermodynamics of(GaN)4 clusters and it is the subject of many experimental and theoretical studies because of theirfundamental importance in chemical and physical process. All calculation of this study is carried outby Gaussian 98. Geometry optimization for (GaN)4 nanocluster are be fulfilled at B3LYP, B1LYPan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 13 1 شماره
صفحات -
تاریخ انتشار 2016