Cycles through a given arc and certain partite sets in strong multipartite tournaments
نویسندگان
چکیده
Moon [J. Combin. Inform. System Sci. 19 (1994), 207–214] showed that every strong tournament contains a Hamiltonian cycle through at least three pancyclic arcs. In this paper, we extend the result of Moon and prove that if D is a strong c-partite tournament with c ≥ 3, then D contains a cycle C containing vertices from exactly c partite sets such that C contains at least three arcs, each of which belongs to a cycle containing vertices from exactly l partite sets for each l ∈ {3, 4, . . . , c}. In addition, this bound is best possible. ∗ Corresponding author: [email protected] † Research is partially supported by NNSFC under no. 61174082. ‡ Research is supported by NNSFC under no. 11201273 282 H. LI, S. LI, Y. GUO AND Q. GUO
منابع مشابه
On cycles through two arcs in strong multipartite tournaments
A multipartite tournament is an orientation of a complete c-partite graph. In [L. Volkmann, A remark on cycles through an arc in strongly connected multipartite tournaments, Appl. Math. Lett. 20 (2007) 1148–1150], Volkmann proved that a strongly connected cpartite tournament with c > 3 contains an arc that belongs to a directed cycle of length m for every m ∈ {3, 4, . . . , c}. He also conjectu...
متن کاملOn Cycles Containing a Given Arc in Regular Multipartite Tournaments
In this paper we prove that if T is a regular n-partite tournament with n ≥ 4, then each arc of T lies on a cycle whose vertices are from exactly k partite sets for k = 4, 5, . . . , n. Our result, in a sense, generalizes a theorem due to Alspach.
متن کاملCycles through a given arc in almost regular multipartite tournaments
If x is a vertex of a digraph D, then we denote by d(x) and d−(x) the outdegree and the indegree of x, respectively. The global irregularity of a digraph D is defined by ig(D) = max{d+(x), d−(x)}−min{d+(y), d−(y)} over all vertices x and y of D (including x = y). If ig(D) = 0, then D is regular and if ig(D) ≤ 1, then D is almost regular. A c-partite tournament is an orientation of a complete c-...
متن کاملCycles Containing a Given Arc in Regular Multipartite Tournaments
In this paper we prove that if T is a regular n-partite tournament with n≥6, then each arc of T lies on a k-cycle for k=4,5,···,n. Our result generalizes theorems due to Alspach and Guo respectively.
متن کاملMultipartite tournaments with small number of cycles
L. Volkmann, Discrete Math. 245 (2002) 19-53 posed the following question. Let 4 ≤ m ≤ n. Are there strong n-partite tournaments, which are not themselves tournaments, with exactly n − m + 1 cycles of length m? We answer this question in affirmative. We raise the following problem. Given m ∈ {3, 4, . . . , n}, find a characterization of strong n-partite tournaments having exactly n −m + 1 cycle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 57 شماره
صفحات -
تاریخ انتشار 2013