Mechanical environment alters tissue formation patterns during fracture repair.
نویسندگان
چکیده
Fracture repair has previously been shown to be sensitive to mechanical environment, yet the specific relationship between strain character, magnitude and frequency, as well as other mechanical parameters, and tissue formation is not well understood. This study aimed to correlate strain distribution within the healing fracture gap with patterns of tissue formation using a rat model of a healing osteotomy subject to mechanical stimulation in bending. Finite element models based on realistic tissue distributions were used to estimate both the magnitude and spatial distribution of strains within the fracture gap. The spatial distribution of regenerating tissue was determined by microcomputed tomography and histology, and was confirmed using reverse transcription-polymerase chain reaction (RT-PCR). Results suggest that tensile strains suppress chondrogenesis during the mechanical stimulation period. After stimulation ends, however, tensile strains increased chondrogenesis followed by rapid bone formation. In contrast, in compressive environments, bone is formed primarily via intramembranous ossification. Taken together, these results suggest that intermittent tensile strains during fracture repair stimulate endochondral ossification and promote eventual bone healing compared to intermittent compressive strains and unstimulated fractures. Further understanding of these relationships may allow proposal of optimal therapeutic strategies for improvement of the fracture repair process.
منابع مشابه
Recent advances in mechanobiological modeling of bone regeneration
Skeletal regeneration and bone fracture repair involves complex cellular and molecular events that result in new bone formation. Many of the critical steps during bone healing are dependent on the local mechanical environment in the healing tissue. Computational models are used together with mechano-regulation algorithms to predict the influence of mechanical stimuli on the tissue differentiati...
متن کاملMechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair.
A number of mechano-regulation theories have been proposed that relate the differentiation pathway of mesenchymal stem cells (MSCs) to their local biomechanical environment. During spontaneous repair processes in skeletal tissues, the organisation of the extracellular matrix is a key determinant of its mechanical fitness. In this paper, we extend the mechano-regulation theory proposed by Prende...
متن کاملThe Influence of Load Magnitude on Fracture Repair in a Murine Model: a Fem Study
INTRODUCTION The treatment of bone fracture is an important public health problem in an ageing population. Healing involves a series of biological events that restores the tissue to its original shape and mechanical properties. It has been shown that the mechanical environment can modulate tissue differentiation. Several mechanoregulatory algorithms have been proposed to predict tissue differen...
متن کاملSubstrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation during Skeletal Tissue Regeneration: A Mechanobiological Model
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies h...
متن کاملA case for optimising fracture healing through inverse dynamization.
The mechanical conditions in the repair tissues are known to influence the outcome of fracture healing. These mechanical conditions are determined by the stiffness of fixation and limb loading. Experimental studies have shown that there is a range of beneficial fixation stiffness for timely healing and that fixation stiffness that is either too flexible or too stiff impairs callus healing. Howe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of orthopaedic research : official publication of the Orthopaedic Research Society
دوره 22 5 شماره
صفحات -
تاریخ انتشار 2004