Biohybrid Carbon Nanotube/Agarose Fibers for Neural Tissue Engineering.

نویسندگان

  • Dan Y Lewitus
  • John Landers
  • Jonathan Branch
  • Karen L Smith
  • Gerardo Callegari
  • Joachim Kohn
  • Alexander V Neimark
چکیده

We report a novel approach for producing carbon nanotube fibers (CNF) composed with the polysaccharide agarose. Current attempts to make CNF's require the use of a polymer or precipitating agent in the coagulating bath that may have negative effects in biomedical applications. We show that by taking advantage of the gelation properties of agarose one can substitute the bath with distilled water or ethanol and hence reduce the complexity associated with alternating the bath components or the use of organic solvents. We also demonstrate that these CNF can be chemically functionalized to express biological moieties through available free hydroxyl groups in agarose. We corroborate that agarose CNF are not only conductive and nontoxic, but their functionalization can facilitate cell attachment and response both in vitro and in vivo. Our findings suggest that agarose/CNT hybrid materials are excellent candidates for applications involving neural tissue engineering and biointerfacing with the nervous system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Neural Space Mapping for Modeling Ballistic Carbon Nanotube Transistors

In this paper, using the neural space mapping (NSM) concept, we present a SPICE-compatible modeling technique to modify the conventional MOSFET equations, to be suitable for ballistic carbon nanotube transistors (CNTTs). We used the NSM concept in order to correct conventional MOSFET equations so that they could be used for carbon nanotube transistors. To demonstrate the accuracy of our mod...

متن کامل

Fabrication of Millimeter-Long Carbon Tubular Nanostructures Using the Self-Rolling Process Inherent in Elastic Protein Layers.

Millimeter-long conducting fibers can be fabricated from carbon nanomaterials via a simple method involving the release of a prestrained protein layer. This study shows how a self-rolling process initiated by polymerization of a micropatterned layer of fibronectin (FN) results in the production of carbon nanomaterial-based microtubular fibers. The process begins with deposition of carbon nanotu...

متن کامل

Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...

متن کامل

Bioactive Agarose Carbon-Nanotube Composites are Capable of Manipulating Brain-Implant Interface.

Composite electrodes made of the polysaccharide agarose and carbon nanotube fibers (A-CNE) have shown potential to be applied as tissue-compatible, micro-electronic devices. In the present work, A-CNEs were functionalized using neuro-relevant proteins (laminin and alpha-melanocyte stimulating hormone) and implanted in brain tissue for 1 week (acute response) and 4 weeks (chronic response). Qual...

متن کامل

Carbon Nanotube Reinforced Bombyx Mori Silk as a Biocomposite Material for Tissue Engineering Applications

Silk fibers are fibrous protein with unique combination of strength and toughness. Its biocompatibility makes it an ideal candidate for various biomedical applications. We hypothesized that composites consisting of silk and carbon nanotube (CNT) will have superior mechanical properties. This paper describes the production of protein based scaffolds having required mechanical properties and acti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advanced functional materials

دوره 21 14  شماره 

صفحات  -

تاریخ انتشار 2011