Functional disparity between human PAWP and PLCζ in the generation of Ca2+ oscillations for oocyte activation.
نویسندگان
چکیده
Mammalian oocyte activation is mediated by cytosolic calcium (Ca(2+)) oscillations initiated upon delivery of a putative 'sperm factor' by the fertilizing sperm. Previous studies suggest the identity of this sperm factor as the testis-specific phospholipase C-zeta (PLCζ). Recently, a post-acrosomal sheath WW domain-binding protein (PAWP) has been proposed as an alternative sperm factor candidate, following a report that human PAWP protein and cRNA elicited Ca(2+) oscillations in mouse and human oocytes. Those Ca(2+) oscillations were inhibited by a PAWP-derived peptide corresponding to a functional PPGY binding motif. Herein, using a series of human PAWP expression constructs, we demonstrate that both human PAWP protein and cRNA are, in our experiments, unable to elicit Ca(2+) release following microinjection into mouse oocytes. Parallel experiments performed with human PLCζ elicited the characteristic Ca(2+) oscillations present at mammalian fertilization, which produced oocyte activation and embryo development. Furthermore, sperm-induced Ca(2+) oscillations were not inhibited by the PAWP-derived PPGY peptide following in vitro fertilization or intracytoplasmic sperm injection. Thus, the functional disparity with PLCζ leads us to conclude that human PAWP is neither sufficient nor necessary for the Ca(2+) oscillations that initiate mammalian oocyte activation at fertilization.
منابع مشابه
Sperm-specific post-acrosomal WW-domain binding protein (PAWP) does not cause Ca2+ release in mouse oocytes.
Mature mammalian oocytes undergo a prolonged series of cytoplasmic calcium (Ca(2+)) oscillations at fertilization that are the cause of oocyte activation. The Ca(2+) oscillations in mammalian oocytes are driven via inositol 1,4,5-trisphosphate (IP3) generation. Microinjection of the sperm-derived phospholipase C-zeta (PLCζ), which generates IP3, causes the same pattern of Ca(2+) oscillations as...
متن کاملIs PAWP the “real” sperm factor?
Mammalian embryo development is initiated by intracellular Ca2+ oscillations that result in oocyte activation following gamete membrane fusion. It is widely believed that oocyte Ca2+ oscillations are triggered by a sperm-specific protein, phospholipase C-zeta (PLCζ) that activates InsP3 production leading to repetitive Ca2+ release from intracellular stores. However, a recent report in the FASE...
متن کاملRe: Is PAWP the ‘real’ sperm factor?
Mammalian embryo development is init iated by intracel lular Ca2+ oscillations that result in oocyte activation following gamete membrane fusion. It is widely believed that oocyte Ca2+ oscillations are triggered by a sperm-specific protein, phospholipase C-zeta (PLCζ) that activates InsP3 production leading to repetitive Ca2+ release from intracellular stores. However, a recent report in the FA...
متن کاملI-15: Assessment of Transcript and Protein Profiles of Infertile Individual May Help to Select Individuals with Low Fertilization Potential Candidate of Artificial Oocyte Activation
Background Following sperm penetration, oocyte is activated by sperm oocyte activating factors (SOAFs) released by sperm. Spermspecific phospholipase C isoform ζ (PLCζ) and post acrosomal WW binding protein (PAWP) are two nominees for the SOAF. PLCζ is located back-to-back with another testis-specific gene called CAPZA3. These two genes share a common bidirectional promoter. In this study we as...
متن کاملRelationship between Potential Sperm Factors Involved in Oocyte Activation and Sperm DNA Fragmentation with Intra-Cytoplasmic Sperm Injection Clinical Outcomes
OBJECTIVE The present study aimed to simultaneously evaluate the association between expression of three potential factors [post-acrosomal sheath WW domain-binding protein (PAWP), phospholipase Cζ (PLCζ), and truncated form of the kit receptor (TR-KIT)] as candidates of oocyte activation with fertilization rate and early embryonic development. MATERIALS AND METHODS In this experimental study,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular human reproduction
دوره 21 9 شماره
صفحات -
تاریخ انتشار 2015