A review on multi-task metric learning
نویسندگان
چکیده
Distance metric plays an important role in machine learning which is crucial to the performance of a range of algorithms. Metric learning, which refers to learning a proper distance metric for a particular task, has attracted much attention in machine learning. In particular, multi-task learning deals with the scenario where there are multiple related metric learning tasks. By jointly training these tasks, useful information is shared among the tasks, which significantly improves their performances. This paper reviews the literature on multi-task metric learning. Various methods are investigated systematically and categorized into four families. The central ideas of these methods are introduced in detail, followed by some representative applications. Finally, we conclude the review and propose a number of future work directions.
منابع مشابه
Composite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملMulti-Task Low-Rank Metric Learning Based on Common Subspace
Multi-task learning, referring to the joint training of multiple problems, can usually lead to better performance by exploiting the shared information across all the problems. On the other hand, metric learning, an important research topic, is however often studied in the traditional single task setting. Targeting this problem, in this paper, we propose a novel multi-task metric learning framew...
متن کاملMulti-Task Metric Learning on Network Data
Multi-task learning (MTL) has been shown to improve prediction performance in a number of different contexts by learning models jointly on multiple different, but related tasks. Network data, which are a priori data with a rich relational structure, provide an important context for applying MTL. In particular, the explicit relational structure implies that network data is not i.i.d. data. Netwo...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملOn Combining Side Information and Unlabeled Data for Heterogeneous Multi-Task Metric Learning
Distance metric learning (DML) is critical for a wide variety of machine learning algorithms and pattern recognition applications. Transfer metric learning (TML) leverages the side information (e.g., similar/dissimilar constraints over pairs of samples) from related domains to help the target metric learning (with limited information). Current TML tools usually assume that different domains exp...
متن کامل