A Bijective Proof of the Second Reduction Formula for Littlewood-richardson Coefficients

نویسندگان

  • Soojin Cho
  • Eun-Kyoung Jung
  • Dongho Moon
  • A. R. Richardson
  • DONGHO MOON
  • P. Hanlon
  • S. Sundaram
چکیده

There are two well known reduction formulae for structural constants of the cohomology ring of Grassmannians, i.e., LittlewoodRichardson coefficients. Two reduction formulae are a conjugate pair in the sense that indexing partitions of one formula are conjugate to those of the other formula. A nice bijective proof of the first reduction formula is given in the authors’ previous paper while a (combinatorial) proof for the second reduction formula in the paper depends on the identity between Littlewood-Richardson coefficients of conjugate shape. In this article, a direct bijective proof for the second reduction formula for Littlewood-Richardson coefficients is given. Our proof is independent of any previously known results (or bijections) on tableaux theory and supplements the arguments on bijective proofs of reduction formulae in the authors’ previous paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Extension of Reduction Formula for Littlewood-richardson Coefficients

There is a well-known classical reduction formula by Griffiths and Harris for Littlewood-Richardson coefficients, which reduces one part from each partition. In this article, we consider an extension of the reduction formula reducing two parts from each partition. This extension is a special case of the factorization theorem of Littlewood-Richardson coefficients by King, Tollu, and Toumazet (th...

متن کامل

Reduction formulae from the factorization Theorem of Littlewood-Richardson polynomials by King, Tollu and Toumazet

The factorization theorem by King, Tollu and Toumazet gives four different reduction formulae of LittlewoodRichardson coefficients. One of them is the classical reduction formula of the first type while others are new. Moreover, the classical reduction formula of the second type is not a special case of KTT theorem. We give combinatorial proofs of reduction formulae in terms of tableaux or hive...

متن کامل

Se p 20 04 A simple proof of associativity and commutativity of LR - coefficients ( or the hive ring )

A simple proof of associativity and commutativity of LR-coefficients (or the hive ring) In this paper we propose a simple bijective proof of associativity and commutativity of Littlewood-Richardson coefficient or the hive ring ([13]).

متن کامل

A Combinatorial Proof That Schubert vs. Schur Coefficients Are Nonnegative

We give a combinatorial proof that the product of a Schubert polynomial by a Schur polynomial is a nonnegative sum of Schubert polynomials. Our proof uses Assaf’s theory of dual equivalence to show that a quasisymmetric function of Bergeron and Sottile is Schur-positive. By a geometric comparison theorem of Buch and Mihalcea, this implies the nonnegativity of Gromov-Witten invariants of the Gra...

متن کامل

Littlewood-Richardson Coefficients and Integrable Tilings

We provide direct proofs of product and coproduct formulae for Schur functions where the coefficients (Littlewood–Richardson coefficients) are defined as counting puzzles. The product formula includes a second alphabet for the Schur functions, allowing in particular to recover formulae of [Molev–Sagan ’99] and [Knutson–Tao ’03] for factorial Schur functions. The method is based on the quantum i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008