Training the neural networks by electromagnetism-like mechanism based algorithm

نویسندگان

  • Hamid A. Jalab
  • Khalid Shaker
چکیده

Recently, medical data mining has become one of the most popular topics in the data mining community. This is due to the societal importance of the field and also the particular computational challenges posed in this domain of data mining. Early researches concentrated on sequential heuristics and later moved to meta-heuristic approaches due to the ability of these approaches to generate better solutions. The aim of this paper is to introduce the basic principles of a new meta-heuristic algorithm called Electromagnetism-like Mechanism (EMag) for neural network training. EMag simulates the electromagnetism theory of physics by considering each data sample to be an electrical charge. For neural network, EMag simulates the attraction-repulsion mechanism of each weight connection as charge partials to move towards the optimum without being trapped into local minimum. The performance of the proposed algorithm is evaluated in 12 of benchmark classification problems, and the computational results show that the proposed algorithm performs better than the standard back propagation algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electromagnetism-like algorithm for fuzzy flow shop batch processing machines scheduling to minimize total weighted earliness and ‎tardiness‎

‎In this paper, we study a flow shop batch processing machines scheduling problem. The fuzzy due dates are considered to make the problem more close to the reality. The objective function is taken as the weighted sum of fuzzy earliness and fuzzy tardiness. In order to tackle the given problem, we propose a hybrid electromagnetism-like (EM) algorithm, in which the EM is hybridized with a diversi...

متن کامل

Electromagnetism-Like Mechanism Based Algorithm for Neural Network Training

Due to the complex nature of training neural network (NN), this problem has gained popularity in the nonlinear optimization field. In order to avoid falling into local minimum because of inappropriate initial weights, a number of global search techniques are developed. This paper applies a novel global algorithm, which is electromagnetism-like mechanism (EM) algorithm, to train NN and the EM ba...

متن کامل

An electromagnetism-like metaheuristic for open-shop problems with no buffer

This paper considers open-shop scheduling with no intermediate buffer to minimize total tardiness. This problem occurs in many production settings, in the plastic molding, chemical, and food processing industries. The paper mathematically formulates the problem by a mixed integer linear program. The problem can be optimally solved by the model. The paper also develops a novel metaheuristic base...

متن کامل

A Reliability based Modelling and Optimization of an Integrated Production and Preventive Maintenance Activities in Flowshop Scheduling Problem

Traditional scheduling problems with the batch processing machines (BPM) assume that machines are continuously available, and no time is needed for their preventive maintenance (PM). In this paper, we study a realistic variant of flowshop scheduling which integrates flow shop batch processing machines (FBPM) and preventive maintenance for minimizing the makespan. In order to tackle the given pr...

متن کامل

Using Electromagnetism Algorithm for Determining the Number of kanbans in a Multi-stage Supply Chain System

This paper studies the multi-stage supply chain system (MSSCM) controlled by the kanban mechanism. In the kanban system, decision making is based on the number of kanbans as well as batch sizes. A kanban mechanism is employed to assist in linking different production processes in a supply chain system in order to implement the scope of just-in-time (JIT) philosophy. For a MSSCM, a mixed-integer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014