Protein translocation through anthrax toxin channels formed in planar lipid bilayers.

نویسندگان

  • Sen Zhang
  • Eshwar Udho
  • Zhengyan Wu
  • R John Collier
  • Alan Finkelstein
چکیده

The 63-kDa fragment of the protective antigen (PA) component of anthrax toxin forms a heptameric channel, (PA63)7, in acidic endosomal membranes that leads to the translocation of edema factor (EF) and lethal factor (LF) to the cytosol. It also forms a channel in planar phospholipid bilayer membranes. What role does this channel play in the translocation of EF and LF? We report that after the 263-residue N-terminal piece of LF (LFN) binds to its receptor on the (PA63)7 channel and its N-terminal end enters the channel at small positive voltages to block it, LFN is translocated through the channel to the opposite side at large positive voltages, thereby unblocking it. Thus, all of the translocation machinery is contained in the (PA63)7 channel, and translocation does not require any cellular proteins. The kinetics of this translocation are S-shaped, voltage-dependent, and occur on a timescale of seconds. We suggest that the translocation process might be explained simply by electrophoresis of unfolded LFN through the channel, but the refolding of the N-terminal half of LFN as it emerges from the channel may also provide energy for moving the rest of the molecule through the channel.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search for cyclodextrin-based inhibitors of anthrax toxins: synthesis, structural features, and relative activities.

Recently, using structure-inspired drug design, we demonstrated that aminoalkyl derivatives of beta-cyclodextrin inhibited anthrax lethal toxin action by blocking the transmembrane pore formed by the protective antigen (PA) subunit of the toxin. In the present study, we evaluate a series of new beta-cyclodextrin derivatives with the goal of identifying potent inhibitors of anthrax toxins. Newly...

متن کامل

Charge requirements for proton gradient-driven translocation of anthrax toxin.

Anthrax lethal toxin is used as a model system to study protein translocation. The toxin is composed of a translocase channel, called protective antigen (PA), and an enzyme, called lethal factor (LF). A proton gradient (ΔpH) can drive LF unfolding and translocation through PA channels; however, the mechanism of ΔpH-mediated force generation, substrate unfolding, and establishment of directional...

متن کامل

Protein translocation through the anthrax toxin transmembrane pore is driven by a proton gradient.

Protective antigen (PA) from anthrax toxin assembles into a homoheptamer on cell surfaces and forms complexes with the enzymatic components: lethal factor (LF) and edema factor (EF). Endocytic vesicles containing these complexes are acidified, causing the heptamer to transform into a transmembrane pore that chaperones the passage of unfolded LF and EF into the cytosol. We show in planar lipid b...

متن کامل

Polylysine-Mediated Translocation of the Diphtheria Toxin Catalytic Domain through the Anthrax Protective Antigen Pore

The protective antigen (PA) moiety of anthrax toxin forms oligomeric pores in the endosomal membrane, which translocate the effector proteins of the toxin to the cytosol. Effector proteins bind to oligomeric PA via their respective N-terminal domains and undergo N- to C-terminal translocation through the pore. Earlier we reported that a tract of basic amino acids fused to the N-terminus of an u...

متن کامل

A kinetic analysis of protein transport through the anthrax toxin channel

Anthrax toxin is composed of three proteins: a translocase heptameric channel, (PA(63))(7), formed from protective antigen (PA), which allows the other two proteins, lethal factor (LF) and edema factor (EF), to translocate across a host cell's endosomal membrane, disrupting cellular homeostasis. (PA(63))(7) incorporated into planar phospholipid bilayer membranes forms a channel capable of trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 87 6  شماره 

صفحات  -

تاریخ انتشار 2004