Intuitionistic Type Theory

نویسندگان

  • Peter Dybjer
  • Erik Palmgren
چکیده

Intuitionistic Type Theory (also Constructive Type Theory or Martin-Löf Type Theory) is a formal logical system and philosophical foundation for constructive mathematics (link). It is a fullscale system which aims to play a similar role for constructive mathematics as Zermelo-Fraenkel Set Theory (link) does for classical mathematics. It is based on the propositions-as-types principle and clarifies the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic. It extends this interpretation to the more general setting of Intuitionistic Type Theory and thus provides a general conception not only of what a constructive proof is, but also of what a constructive mathematical object is. The main idea is that mathematical concepts such as elements, sets and functions are explained in terms of concepts from programming such as data structures, data types and programs. This article describes the formal system of Intuitionistic Type Theory and its semantic foundations. • 1. Overview • 2. Propositions as types – 2.1 Intuitionistic Type Theory a new way of looking at logic? – 2.2 The Curry-Howard correspondence – 2.3 Sets of proof-objects – 2.4 Dependent types – 2.5 Propositions as types in Intuitionistic Type Theory • 3. Basic Intuitionistic Type Theory – 3.1 Judgments – 3.2 Judgment forms – 3.3 Inference rules – 3.4 Intuitionistic predicate logic – 3.5 Natural numbers – 3.6 The universe of small types – 3.7 Propositional identity – 3.8 The axiom of choice is a theorem ∗[email protected][email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOVEL TRIANGULAR INTERVAL TYPE-2 INTUITIONISTIC FUZZY SETS AND THEIR AGGREGATION OPERATORS

The objective of this work is to present a triangular interval type-2 (TIT2) intuitionistic fuzzy sets and their corresponding aggregation operators, namely, TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid averaging based on Frank norm operation laws. Furthermore, based on these operators, an approach to mul...

متن کامل

An Intuitionistic Version of Cantor's Theorem

An intuitionistic version of Cantor’s theorem, which shows that there is no surjective function from the type of the natural numbers N into the type N → N of the functions from N into N , is proved within MartinLöf’s Intuitionistic Type Theory with the universe of the small types. Mathematics Subject Classification: 03B15, 03B20.

متن کامل

Common Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)

In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and  the common property (E.A.) in   modified  intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.

متن کامل

Categorical Models for Intuitionistic and Linear Type Theory

This paper describes the categorical semantics of a system of mixed intuitionistic and linear type theory (ILT). ILT was proposed by G. Plotkin and also independently by P. Wadler. The logic associated with ILT is obtained as a combination of intuitionistic logic with intuitionistic linear logic, and can be embedded in Barber and Plotkin's Dual Intuitionistic Linear Logic (DILL). However, unlik...

متن کامل

The Interpretation of Intuitionistic Type Theory in Locally Cartesian Closed Categories - an Intuitionistic Perspective

We give an intuitionistic view of Seely’s interpretation of Martin-Löf’s intuitionistic type theory in locally cartesian closed categories. The idea is to use Martin-Löf type theory itself as metalanguage, and E-categories, the appropriate notion of categories when working in this metalanguage. As an E-categorical substitute for the formal system of Martin-Löf type theory we use E-categories wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015