A Comprehensive Human-body Dynamic Model towards the Development of a Powered Exoskeleton for Paraplegics
نویسندگان
چکیده
Kinematic and dynamic models of a human body are presented. The models intend to represent paraplegics wearing a powered exoskeleton. The proposed exoskeleton fully controls the motion of the hip and knee joints, i.e., each lower extremity contains four actuators, three at the hip joint and one at the knee joint. A spring-loaded ankle-foot orthosis completes the exoskeleton. The kinematic model involves a large number of degrees of freedom, 34-DOF. The dynamic model presents a general formulation that can be implemented for any human task – walking, running, jumping, climbing stairs, etc. Traditional dynamic models simplify the motion of bipeds by considering a limited number of movements contained in the sagittal plane and by focusing on a particular task. A 3D model of a human body has been developed to simulate motion.
منابع مشابه
A Survey in the Different Designs and Control Systems of Powered-exoskeleton for Lower Extremities
In this paper, previous studies in powered exoskeleton and their contributions in the field of robotics technology are presented, together with their corresponding control system. Specific problems and issues that were encountered and the solutions made to resolve the problems will be discussed. Gait cycle analysis and human body dynamic model will also be covered in the study to understand the...
متن کاملEffect of Target Impedance Selection on the Lower Extremity Assistive Exoskeleton Performance
Exoskeletons are utilized extensively in robotic rehabilitation and power augmentation purposes. One of the most recognised control algorithms utilized in this field is the impedance controller. Impedance control approach provides the capability of realizing different rehabilitation exercises by tuning the target impedance gains. Trial and error experimental approach is one of the most common m...
متن کاملConceptual Design of a Gait Rehabilitation Robot
Gait rehabilitation using body weight support on a treadmill is a recommended rehabilitation technique for neurological injuries, such as spinal cord injury. In this paper, a new robotic orthosis is presented for treadmill training. In the presented design the criteria such as low inertia of robot components, backdrivability, high safety and degrees of freedom based on human walking are conside...
متن کاملFrom Passive Dynamic Walking to Passive Turning of Biped walker
Dynamically stable biped robots mimicking human locomotion have received significant attention over the last few decades. Formerly, the existence of stable periodic gaits for straight walking of passive biped walkers was well known and investigated as the notion of passive dynamic walking. This study is aimed to elaborate this notion in the case of three dimensional (3D) walking and extend it f...
متن کاملHeuristic-based online adaptation of ankle exoskeleton assistance using plantarflexor electromyography
INTRODUCTION People often change their coordination strategies as they learn to walk with ankle exoskeletons [1], yet most current exoskeleton control approaches do not appropriately account for these changes. Timebased assistance techniques, in which the exoskeleton is actuated at a specific point in the gait cycle [2, 3], keep device behavior static regardless of human adaptation. Proportiona...
متن کامل