Hydrogen-Driven Cage Unzipping of C60 into Nano-Graphenes

نویسندگان

  • Alexandr V. Talyzin
  • Serhiy Luzan
  • Ilya V. Anoshkin
  • Albert G. Nasibulin
  • Esko I. Kauppinnen
  • Andrzej Dzwilewski
  • Ahmed Kreta
  • Janko Jamnik
  • Abdou Hassanien
  • Anna Lundstedt
  • Helena Grennberg
چکیده

Annealing of C60 in hydrogen at temperatures above the stability limit of C-H bonds in C60H x (500-550 °C) is found to result in direct collapse of the cage structure, evaporation of light hydrocarbons, and formation of solid mixture composed of larger hydrocarbons and few-layered graphene sheets. Only a minor part of this mixture is soluble; this was analyzed using matrix-assisted laser desorption/ionization MS, Fourier transform infrared (FTIR), and nuclear magnetic resonance spectroscopy and found to be a rather complex mixture of hydrocarbon molecules composed of at least tens of different compounds. The sequence of most abundant peaks observed in MS, which corresponds to C2H2 mass difference, suggests a stepwise breakup of the fullerene cage into progressively smaller molecular fragments edge-terminated by hydrogen. A simple model of hydrogen-driven C60 unzipping is proposed to explain the observed sequence of fragmentation products. The insoluble part of the product mixture consists of large planar polycyclic aromatic hydrocarbons, as evidenced by FTIR and Raman spectroscopy, and some larger sheets composed of few-layered graphene, as observed by transmission electron microscopy. Hydrogen annealing of C60 thin films showed a thickness-dependent results with reaction products significantly different for the thinnest films compared to bulk powders. Hydrogen annealing of C60 films with the thickness below 10 nm was found to result in formation of nanosized islands with Raman spectra very similar to the spectra of coronene oligomers and conductivity typical for graphene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning the layer-dependent doping effect of graphenes by C60.

In this work, the doping of n-layer graphenes with C60 is investigated via Raman spectroscopy. The results indicate that C60 can induce hole doping in graphenes, and that the doping level is closely related to the layer number of the graphenes. Moreover, the level of doping in the hybrid of C60 on graphene (C60/G) is more significant than that in the hybrid of graphene on C60 (G/C60).

متن کامل

Materials for Hydrogen Storage and Synthesis of New Materials by Hydrogenation

The search for new materials for hydrogen storage is important for the development of future hydrogen energy applications. In this Thesis, it is shown that new materials with interesting properties can be synthesized by the reaction of hydrogen with various nanocarbon precursors. The thesis consists of two parts. The first part is devoted to studies of hydrogen storage in some metalorganic fram...

متن کامل

علم نانومتری ملکولC60

  Over the past few years, nano-science and its associated nano-technology have emerged into prominence in research instiutions across the world. They have brought about new scientific and engineering paradigms, allowing for the manipulation of single atoms and molecules, designing and fabricating new materials, atom-by-atom, and devices that operate on significantly reduced time and length sca...

متن کامل

Flat-on ambipolar triphenylamine/C60 nano-stacks formed from the self-organization of a pyramid-sphere-shaped amphiphile.

A giant amphiphile, which is constructed with an amorphous nano-pyramid (triphenylamine, TPA) and a crystalline nano-sphere (C60), was synthesized. Structural characterization indicates that this pyramid-sphere-shaped amphiphile (TPA-C60 ) forms a solvent-induced ordered phase, in which the two constituent units self-assemble into alternating stacks of two-dimensional (2D) TPA and C60 nano-shee...

متن کامل

Nontrivial Tuning of the Hydrogen-Binding Energy to Fullerenes with Endohedral Metal Dopants

We report a first-principle study of the tunable hydrogenation of endohedral metallofullerenes M@C60 and M2@C60, where M ) Li, Be, Mg, Ca, Al, and Sc. The interaction between the encapsulated metal atoms and the C60 cage leads to a tuning of the hydrogen binding in a desired manner as the hydrogenation proceeds. At lower H densities, when H atoms are too strongly bound to pure C60, the endohedr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2014