Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors.

نویسندگان

  • Jong-Dae Ji
  • Kyung-Hyun Park-Min
  • Zenxin Shen
  • Roberto J Fajardo
  • Steven R Goldring
  • Kevin P McHugh
  • Lionel B Ivashkiv
چکیده

TLRs have been implicated in promoting osteoclast-mediated bone resorption associated with inflammatory conditions. TLRs also activate homeostatic mechanisms that suppress osteoclastogenesis and can limit the extent of pathologic bone erosion associated with infection and inflammation. We investigated mechanisms by which TLRs suppress osteoclastogenesis. In human cell culture models, TLR ligands suppressed osteoclastogenesis by inhibiting expression of receptor activator of NF-kappaB (RANK), thereby making precursor cells refractory to the effects of RANKL. Similar but less robust inhibition of RANK expression was observed in murine cells. LPS suppressed generation of osteoclast precursors in mice in vivo, and adsorption of LPS onto bone surfaces resulted in diminished bone resorption. Mechanisms that inhibited RANK expression were down-regulation of RANK transcription, and inhibition of M-CSF signaling that is required for RANK expression. TLRs inhibited M-CSF signaling by rapidly down-regulating cell surface expression of the M-CSF receptor c-Fms by a matrix metalloprotease- and MAPK-dependent mechanism. Additionally, TLRs cooperated with IFN-gamma to inhibit expression of RANK and of the CSF1R gene that encodes c-Fms, and to synergistically inhibit osteoclastogenesis. Our findings identify a new mechanism of homeostatic regulation of osteoclastogenesis that targets RANK expression and limits bone resorption during infection and inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct inhibition of human RANK+ osteoclast precursors identifies a homeostatic function of IL-1beta.

IL-1β is a key mediator of bone resorption in inflammatory settings, such as rheumatoid arthritis (RA). IL-1β promotes osteoclastogenesis by inducing RANKL expression on stromal cells and synergizing with RANKL to promote later stages of osteoclast differentiation. Because IL-1Rs share a cytosolic Toll-IL-1R domain and common intracellular signaling molecules with TLRs that can directly inhibit...

متن کامل

Exposure to receptor-activator of NFκB ligand renders pre-osteoclasts resistant to IFN-γ by inducing terminal differentiation

While it has been established that IFN-gamma is a strong activator of macrophages and a potent inhibitor of osteoclastogenesis in vitro, it is also known that this cytokine is produced in particular settings of inflammatory bone loss, such as infection and psoriatic arthritis. Because of the different kinetics between rapid IFN-gamma macrophage activation (<24 hours) and the slower receptor-act...

متن کامل

Signaling crosstalk between RANKL and interferons in osteoclast differentiation

Regulation of osteoclast differentiation is an aspect central to the understanding of the pathogenesis and the treatment of bone diseases such as autoimmune arthritis and osteoporosis. In fact, excessive signaling by RANKL (receptor activator of nuclear factor kappaB ligand), a member of the tumor necrosis factor (TNF) family essential for osteoclastogenesis, may contribute to such pathological...

متن کامل

The ubiquitin-mediated degradation of Jak1 modulates osteoclastogenesis by limiting interferon-beta-induced inhibitory signaling.

Interferons (IFNs) have been shown to negatively regulate osteoclastogenesis. In a proteomic study to assess protein expression during osteoclastogenesis, we discovered that the expression level of Jak1 was significantly decreased during the early stage of osteoclast differentiation from mouse bone marrow macrophages (BMMs) upon stimulation with receptor activator of nuclear factor kappaB ligan...

متن کامل

Proinflammatory M1 Macrophages Inhibit RANKL-Induced Osteoclastogenesis.

In response to a defined panel of stimuli, immature macrophages can be classified into two major phenotypes: proinflammatory (M1) and anti-inflammatory (M2). Although both phenotypes have been implicated in several chronic inflammatory diseases, their direct role in bone resorption remains unclear. The present study investigated the possible effects of M1 and M2 macrophages on RANKL-induced ost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 183 11  شماره 

صفحات  -

تاریخ انتشار 2009