Drosophila single-minded represses gene transcription by activating the expression of repressive factors.
نویسندگان
چکیده
The Drosophila single-minded gene controls CNS midline cell development by both activating midline gene expression and repressing lateral CNS gene expression in the midline cells. The mechanism by which Single-minded represses transcription was examined using the ventral nervous system defective gene as a target gene. Transgenic-lacZ analysis of constructs containing fragments of the ventral nervous system defective regulatory region identified sequences required for lateral CNS transcription and midline repression. Elimination of Single-minded:Tango binding sites within the ventral nervous system defective gene did not affect midline repression. Mutants of Single-minded that removed the DNA binding and transcriptional activation regions abolished ventral nervous system defective repression, as well as transcriptional activation of other genes. The replacement of the Single-minded transcriptional activation region with a heterologous VP16 transcriptional activation region restored the ability of Single-minded to both activate and repress transcription. These results indicate that Single-minded indirectly represses transcription by activating the expression of repressive factors. Single-minded provides a model system for how regulatory proteins that act only as transcriptional activators can control lineage-specific transcription in both positive and negative modes.
منابع مشابه
Enhancer diversity and the control of a simple pattern of Drosophila CNS midline cell expression.
Transcriptional enhancers integrate information derived from transcription factor binding to control gene expression. One key question concerns the extent of trans- and cis-regulatory variation in how co-expressed genes are controlled. The Drosophila CNS midline cells constitute a group of neurons and glia in which expression changes can be readily characterized during specification and differe...
متن کاملFunctional interactions between Drosophila bHLH/PAS, Sox, and POU transcription factors regulate CNS midline expression of the slit gene.
During Drosophila embryogenesis the CNS midline cells have organizing activities that are required for proper elaboration of the axon scaffold and differentiation of neighboring neuroectodermal and mesodermal cells. CNS midline development is dependent on Single-minded (Sim), a basic-helix-loop-helix (bHLH)-PAS transcription factor. We show here that Fish-hook (Fish), a Sox HMG domain protein, ...
متن کاملThe Effect of Drought Stresses, Fusarium Culmorum and Heterodera Filipjevi and their Interactions on the Expression Pattern of Transcription Factor Gene NAC69-3 in Bread Wheat
SExtended Abstract Introduction and Objective: Small grain cereals such as wheat, are affected by types of destructive environmental factors such as abiotic and biotic stresses that severely reduce crop yields. To cope with these conditions, transcription factors cause plant resistance to these stresses by activating or suppressing the expression of genes involved in the resistance responses....
متن کاملEvaluation of MYB93 and MAD8 Genes in Transgenic and Non-Transgenic Rice
Increasing drought tolerance, especially in rice, which is one of the most important crops in Asia, is necessary. Transcription factors are specific sequence DNA-binding proteins that are capable of activating or suppressing transcription. These proteins regulate gene expression levels by binding to cis regulatory elements in the promoter of target genes to control various biological processes ...
متن کاملMesodermal repression of single-minded in Drosophila embryo is mediated by a cluster of Snail-binding sites proximal to the early promoter.
single-minded (sim) is a master regulatory gene that directs differentiation in the central nervous system during Drosophila embryogenesis. Recent identification of the mesectoderm enhancer (MSE) of sim has led to the hypothesis that two Snail (Sna)-binding sites in the MSE may repress sim expression in the presumptive mesoderm. We provide evidence here that three Sna-binding sites proximal to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 232 1 شماره
صفحات -
تاریخ انتشار 2001