On the spectral radius of unicyclic graphs with fixed girth
نویسندگان
چکیده
The spectral radius of a graph is the largest eigenvalue of its adjacency matrix. Let U g n be the set of unicyclic graphs of order n with girth g. For all integers n and g with 5 ≤ g ≤ n − 6, we determine the first ⌊ g2⌋+ 3 spectral radii of unicyclic graphs in the set U g n .
منابع مشابه
The Signless Laplacian Spectral Radius of Unicyclic and Bicyclic Graphs with a Given Girth
Let U(n, g) and B(n, g) be the set of unicyclic graphs and bicyclic graphs on n vertices with girth g, respectively. Let B1(n, g) be the subclass of B(n, g) consisting of all bicyclic graphs with two edge-disjoint cycles and B2(n, g) = B(n, g)\B1(n, g). This paper determines the unique graph with the maximal signless Laplacian spectral radius among all graphs in U(n, g) and B(n, g), respectivel...
متن کاملOn the Signless Laplacian Spectral Radius of Unicyclic Graphs with Fixed Matching Number
We determine the graph with the largest signless Laplacian spectral radius among all unicyclic graphs with fixed matching number.
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn Tensor Product of Graphs, Girth and Triangles
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph $G 1 K_2$ to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Ars Comb.
دوره 108 شماره
صفحات -
تاریخ انتشار 2013