AutoBayesian: Developing Bayesian Networks Based on Text Mining

نویسندگان

  • Sandeep Raghuram
  • Yuni Xia
  • Jiaqi Ge
  • Mathew J. Palakal
  • Josette F. Jones
  • Dave Pecenka
  • Eric Tinsley
  • Jean Bandos
  • Jerry Geesaman
چکیده

Bayesian network is a widely used tool for data analysis, modeling and decision support in various domains. There is a growing need for techniques and tools which can automatically construct Bayesian networks from massive text or literature data. In practice, Bayesian networks also need be updated when new data is observed, and literature mining is a very important source of new data after the initial network is constructed. Information closely related to Bayesian network usually includes the causal associations, statistics information and experimental results. However, these associations and numerical results cannot be directly integrated with the Bayesian network. The source of the literature and the perceived quality of research needs to be factored into the process of integration. In this demo, we will present a general methodology and toolkit called AutoBayesian that we developed to automatically build and update a Bayesian network based on the casual relationships derived from text mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Using Fuzzy LR Numbers in Bayesian Text Classifier for Classifying Persian Text Documents

Text Classification is an important research field in information retrieval and text mining. The main task in text classification is to assign text documents in predefined categories based on documents’ contents and labeled-training samples. Since word detection is a difficult and time consuming task in Persian language, Bayesian text classifier is an appropriate approach to deal with different...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

Bridging Text Mining and Bayesian Networks Master of Science

Raghuram, Sandeep Mudabail. M.S., Purdue University, August, 2010. Bridging Text Mining and Bayesian Networks. Major Professor: Yuni Xia. After the initial network is constructed using expert’s knowledge of the domain, Bayesian networks need to be updated as and when new data is observed. Literature mining is a very important source of this new data. In this work, we explore what kind of data n...

متن کامل

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011