Effects of intracerebroventricular administration of 5-(glutathion-S-yl)-alpha-methyldopamine on brain dopamine, serotonin, and norepinephrine concentrations in male Sprague-Dawley rats.

نویسندگان

  • R T Miller
  • S S Lau
  • T J Monks
چکیده

alpha-Methyldopamine (alpha-MeDA) is a metabolite of the serotonergic neurotoxicants 3,4-(+/-)-(methylenedioxy)amphetamine (MDA) and 3,4-(+/-)-(methylenedioxy)methamphetamine (MDMA). alpha-MeDA readily oxidizes, and in the presence of glutathione (GSH) it forms 5-(glutathion-S-yl)-alpha-methyldopamine [5-(glutathion-S-yl)-alpha-MeDA]. Since GSH conjugates of many polyphenols are biologically (re)active, we investigated the role of 5-(glutathion-S-yl)-alpha-MeDA in the acute and long-term neurochemical changes observed after administration of MDA. Intracerebroventricular (icv) administration of 5-(glutathion-S-yl)-alpha-MeDA (720 nmol) to male Sprague-Dawley rats produced behavioral changes similar to those reported after subcutaneous administration of MDA. Thus, animals became hyperactive and aggressive and displayed forepaw treading and Straub tails, behaviors usually seen after administration of serotonin (5-HT) releasers, and consistent with a role for 5-(glutathion-S-yl)-alpha-MeDA in some of the behavioral alterations seen after administration of MDA and MDMA. In addition to the behavioral changes, 5-(glutathion-S-yl)-alpha-MeDA also caused short-term alterations in the dopaminergic, serotonergic, and noradrenergic systems. An increase in dopamine synthesis appears to be a prerequisite for the long-term depletion of brain 5-HT following MDMA administration. However, although 5-(glutathion-S-yl)-alpha-MeDA reproduced some of the effects of MDA on the dopaminergic system and was capable of causing acute increases in 5-HT turnover, a single icv injection of 5-(glutathion-S-yl)-alpha-MeDA did not result in long-term serotonergic toxicity. Thus, although acute stimulation of dopamine turnover may be necessary for long-term serotonergic toxicity, such changes are not sufficient to produce these effects. The effects of a multiple dosing schedule of 5-(glutathion-S-yl)-alpha-MeDA will therefore require investigation before we can define a role for this metabolite in MDA and MDMA mediated neurotoxicity. MDA also produces a pressor response that is related to its ability to release neuronal norepinephrine stores, and 5-(glutathion-S-yl)-alpha-MeDA caused comparable depletions of brain norepinephrine concentrations, indicating that both compounds produce similar effects on the noradrenergic system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of intracerebroventricular injection of CGRP on pain behavioral responses and monoamines concentrations in the periaqueductal gray area in rat

Objective(s): Calcitonin gene related peptide (CGRP) receptors are widely distributed in the central nervous system. The aim of this study was to investigate the effects of intracerebroventricular (ICV) injection of CGRP on pain behavioral responses and on levels of monoamines in the periaqueductal gray area (PAG) during the formalin test in rats.Materials and Methods: Twenty-four male rats wer...

متن کامل

The effects of tramadol on norepinephrine and MHPG releasing in locus coeruleus in formalin test in rats: a brain stereotaxic study

Objective(s):The relationship between tramadol, as an antinociceptive drug, and locus coeruleus (LC), the main noradrenergic nucleus of the brain that affects regulation and modulation of pain through descending noradrenergic pathways was investigated. Materials and Methods: Male Sprague-Dawley rats were divided into four groups of 10 rats. The rats were fixed in stereotaxic instrument and then...

متن کامل

Thioether metabolites of 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine inhibit human serotonin transporter (hSERT) function and simultaneously stimulate dopamine uptake into hSERT-expressing SK-N-MC cells.

3,4-Methylenedioxyamphetamine (MDA) and 3,4-methyl-enedioxymethamphetamine (MDMA, ecstasy) are widely abused amphetamine derivatives that target the serotonin system. The serotonergic neurotoxicity of MDA and MDMA seems dependent on their systemic metabolism. 5-(Glutathion-S-yl)-alpha-methyldopamine [5-(GSyl)-alpha-MeDA] and 2,5-bis(glutathion-S-yl)-alpha-methyldopamine [2,5-bis(GSyl)-alpha-MeD...

متن کامل

Diabetes-induced alteration in brain monoamine metabolism in rats.

Concentrations of monoamines and their metabolites as well as the activities of tyrosine hydroxylase (TH) and of choline acetyltransferase were investigated in various brain regions of control and streptozotocin-treated Sprague-Dawley rats. The animals were rendered diabetic by a single i.v. injection of streptozotocin (65 mg/kg) and killed 10, 30 and 90 days after the treatment. During the cou...

متن کامل

Accumulation of neurotoxic thioether metabolites of 3,4-(+/-)-methylenedioxymethamphetamine in rat brain.

The serotonergic neurotoxicity of 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) appears dependent upon systemic metabolism because direct injection of MDMA into the brain fails to reproduce the neurotoxicity. MDMA is demethylenated to the catechol metabolite N-methyl-alpha-methyldopamine (N-Me-alpha-MeDA). Thioether (glutathione and N-acetylcysteine) metabolites of N-Me-alpha-MeDA are neurotox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 1996