Tensile strength of bilayered ceramics and corresponding glass veneers
نویسندگان
چکیده
PURPOSE To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS Blocks of core ceramics (IPS e.max® Press and Lava™ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and 1 mm(2) in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max® Ceram and Lava™ Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS The mean microtensile bond strength of IPS e.max® Press/IPS e.max® Ceram (43.40 ± 5.51 MPa) was significantly greater than that of Lava™ Frame/Lava™ Ceram (31.71 ± 7.03 MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava™ Frame/Lava™ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava™ Ceram, while the bond strength of bilayered IPS e.max® Press/IPS e.max® Ceram was significantly greater than tensile strength of monolithic IPS e.max® Ceram. CONCLUSION Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.
منابع مشابه
Effect of Lithium Disilicate Reinforced Liner Treatment on Bond and Fracture Strengths of Bilayered Zirconia All-Ceramic Crown
This study was performed to evaluate the effect of a lithium-disilicate spray-liner application on both the bond strength between zirconia cores and heat-pressed lithium-disilicate glass-ceramic veneers, and the fracture strength of all-ceramic zirconia crowns. A lithium-disilicate reinforced liner was applied on the surface of a zirconia core and lithium-disilicate glass-ceramic was veneered o...
متن کاملProduction and Characterization of Glass-Ceramic Materials for Potential Use in Dental Applications: Thermal and Mechanical Properties, Microstructure, and In Vitro Bioactivity
Multicomponent silicate glasses and their corresponding glass-ceramic derivatives were prepared and tested for potential applications in dentistry. The glasses were produced via a melting-quenching process, ground and sieved to obtain fine-grained powders that were pressed in the form of small cylinders and thermally treated to obtain sintered glass-ceramic samples. X-ray diffraction investigat...
متن کاملAn investigation on Mechanical Properties of Apatite-Wollastonite-Diopside Glass-Ceramics Composites
Apatite-wollastonite (A-W)-phlogopite glass-ceramic is considered to be difficult to resorb, but often, it has been incorporated in particulate form to create new bioactive composites for potential maxillofacial applications. With various compositions, the present work has attempted to prepare apatite-wollastonite (A-W)-phlogopite glass ceramic composites, by applying sintering. Here, three-poi...
متن کاملDensification of Wood Veneers Combined with Oil- Heat Treatment. Part Ii: Hygroscopicity and Mechanical Properties
In an effort to achieve high mechanical performance and improved dimensional stability, densification combined with oil-heat treatment (OHT) was performed. In our previous study, OHT was successfully applied to densified veneer, which resulted in improved dimensional stability. In the present study, the impact of OHT on densified wood veneer hygroscopicity and mechanical properties was determin...
متن کاملSelected Properties of a Synthetic Quartz Glass-Ceramic
QDT 2005 1 he restoration of missing or compromised tooth structure requires dental materials that offer toothlike esthetics, functionality, biocompatibility, and longevity. Silica-based ceramics (eg, feldspathic porcelain) offer all of these necessities and are the materials of choice for esthetic all-ceramic restorations (eg, laminate veneers, ceramic inlays and onlays, and full-coverage jack...
متن کامل