Hydrogenophaga electricum sp. nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell.

نویسندگان

  • Zen-ichiro Kimura
  • Satoshi Okabe
چکیده

A Gram-negative, non-spore-forming, rod-shaped bacterial strain, AR20(T), was isolated from anodic biofilms of an acetate-fed microbial fuel cell in Japan and subjected to a polyphasic taxonomic study. Strain AR20(T) grew optimally at pH 7.0-8.0 and 25°C. It contained Q-8 as the predominant ubiquinone and C16:0, summed feature 3 (C16:1ω7c and/or iso-C15:02OH), and C18:1ω7c as the major fatty acids. The DNA G+C content was 67.1 mol%. A neighbor-joining phylogenetic tree revealed that strain AR20(T) clustered with three type strains of the genus Hydrogenophaga (H. flava, H. bisanensis and H. pseudoflava). Strain AR20(T) exhibited 16S rRNA gene sequence similarity values of 95.8-97.7% to the type strains of the genus Hydrogenophaga. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain AR20(T) is considered a novel species of the genus Hydrogenophaga, for which the name Hydrogenophaga electricum sp. nov. is proposed. The type strain is AR20(T) (= KCTC 32195(T) = NBRC 109341(T)).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phylogenetic and Metagenomic Analyses of Substrate-Dependent Bacterial Temporal Dynamics in Microbial Fuel Cells

Understanding the microbial community structure and genetic potential of anode biofilms is key to improve extracellular electron transfers in microbial fuel cells. We investigated effect of substrate and temporal dynamics of anodic biofilm communities using phylogenetic and metagenomic approaches in parallel with electrochemical characterizations. The startup non-steady state anodic bacterial s...

متن کامل

Anodic and cathodic microbial communities in single chamber microbial fuel cells.

Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microb...

متن کامل

Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell.

Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and core material but differed in either surface coating (Pt- or Ta-coated metal composites) or surfa...

متن کامل

Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems

Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter ...

متن کامل

The overshoot phenomenon as a function of internal resistance in microbial fuel cells.

A method for assessing the performance of microbial fuel cells (MFCs) is the polarisation sweep where different external resistances are applied at set intervals (sample rates). The resulting power curves often exhibit an overshoot where both power and current decrease concomitantly. To investigate these phenomena, small-scale (1 mL volume) MFCs operated in continuous flow were subjected to pol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of general and applied microbiology

دوره 59 4  شماره 

صفحات  -

تاریخ انتشار 2013