Enrichment of cations via bipolar electrode focusing.
نویسندگان
چکیده
We have previously demonstrated up to 5 × 10(5)-fold enrichment of anionic analytes in a microchannel using a technique called bipolar electrode focusing (BEF). Here, we demonstrate that BEF can also be used to enrich a cationic fluorescent tracer. The important point is that chemical modification of the microchannel walls enables reversal of the electroosmotic flow (EOF), enabling cations, instead of anions, to be enriched via an electric field gradient focusing mechanism. Reversal of the EOF has significant consequences on the formation and shape of the region of the buffer solution depleted of charge carriers (depletion zone). Electric field measurements and numerical simulations are used to elucidate the factors influencing the depletion zone. This information is used to understand and control the location and shape of the depletion zone, which in turn influences the stability and concentration of the enriched band.
منابع مشابه
Dual-channel bipolar electrode focusing: simultaneous separation and enrichment of both anions and cations.
In this paper we show that a microelectrochemical cell comprising two parallel microchannels spanned by a single bipolar electrode can be used to simultaneously enrich and separate both anions and cations within a single microchannel. This is possible because reduction and oxidation of water at the cathodic and anodic poles of the bipolar electrode, respectively, lead to ion depletion zones. Sp...
متن کاملBipolar electrode focusing: tuning the electric field gradient.
Bipolar electrode (BPE) focusing is a developing technique for enrichment and separation of charged analytes in a microfluidic channel. The technique employs a bipolar electrode that initiates faradaic processes that subsequently lead to formation of an ion depletion zone. The electric field gradient resulting from this depletion zone focuses ions on the basis of their individual electrophoreti...
متن کاملBipolar electrode focusing: the effect of current and electric field on concentration enrichment.
Bipolar electrode focusing at discontinuous bipolar electrodes (BPEs) provides new insight into the faradaic current and electric field characteristics associated with the technique and allows for the controlled transport of a focused anionic tracer in a microfluidic channel. The findings corroborate our previously reported simulation results, which describe the formation of an extended electri...
متن کاملLabel-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing.
We show that a label-free electrochemical method can be used to monitor the position of an enriched analyte band during bipolar electrode focusing in a microfluidic device. The method relies on formation of a depleted buffer cation region, which is responsible for concentration enrichment of the charged analyte. However, this depletion region also leads to an increase in the local electric fiel...
متن کاملMicrochannel plate as a novel bipolar electrode for high-performance enrichment of anions.
Microchannel plate (MCP), a high-porosity glass membrane used as an electron multiplier in analytical/scientific instruments for the detection of energetic photons and charged particles is demonstrated here as a highly effective bipolar electrode (BPE) for electrokinetic focusing of anions. Assembled between a pair of microfluidic channels filled with an electrolyte buffer and subjected to a su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 84 17 شماره
صفحات -
تاریخ انتشار 2012