Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells
نویسندگان
چکیده
The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.
منابع مشابه
Inhibition of the NF-kappaB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius.
Streptococcus salivarius exhibited an anti-inflammatory effect on intestinal epithelial cells (IECs) and monocytes. Strains were screened using a reporter clone, HT-29/kB-luc-E, induced by tumor necrosis factor alpha (TNF-α). Supernatant from each strain downregulated NF-κB activation. The two most efficient strains produced an active metabolite (<3 kDa) which was able to downregulate the secre...
متن کاملThe commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis.
Streptococcus salivarius is an early colonizer of human oral and nasopharyngeal epithelia, and strain K12 has reported probiotic effects. An emerging paradigm indicates that commensal bacteria downregulate immune responses through the action on NF-kappaB signaling pathways, but additional mechanisms underlying probiotic actions are not well understood. Our objective here was to identify host ge...
متن کاملComplete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract
The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.
متن کاملIdentification of commensal bacterial strains that modulate Yersinia enterocolitica and dextran sodium sulfate-induced inflammatory responses: implications for the development of probiotics.
An increasing body of evidence suggests that probiotic bacteria are effective in the treatment of enteric infections, although the molecular basis of this activity remains elusive. To identify putative probiotics, we tested commensal bacteria in terms of their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)...
متن کاملCommensal gut bacteria modulate phosphorylation-dependent PPARγ transcriptional activity in human intestinal epithelial cells
In healthy subjects, the intestinal microbiota interacts with the host's epithelium, regulating gene expression to the benefit of both, host and microbiota. The underlying mechanisms remain poorly understood, however. Although many gut bacteria are not yet cultured, constantly growing culture collections have been established. We selected 57 representative commensal bacterial strains to study b...
متن کامل