Selective release of a cyclopamine glucuronide prodrug toward stem-like cancer cell inhibition in glioblastoma.
نویسندگان
چکیده
Recent data suggest that inhibition of the Hedgehog pathway could be a therapeutic target for glioblastoma. Alkaloid cyclopamine inhibits Hedgehog signaling, depleting stem-like cancer cells derived from glioblastoma. However, this compound is toxic for somatic stem cells, preventing its use for clinical applications. In this study, we tested a derivatization product of cyclopamine in the form of cyclopamine glucuronide prodrug (CGP-2). This compound was used in vitro and in vivo toward glioblastoma-initiating cells (GIC). Results obtained in vitro indicate that CGP-2 is active only in the presence of β-glucuronidase, an enzyme detected in high levels in necrotic areas of glioblastomas. CGP-2 decreased proliferation and inhibited the self-renewal of all GIC lines tested. Hedgehog pathway blockade by 10 μmol/L of CGP-2 induced a 99% inhibition of clonogenicity on GICs, similar to cyclopamine treatment. Combination of CGP-2 with radiation decreased clonogenic survival in all GIC lines compared with CGP-2 alone. In a subcutaneous glioblastoma xenograft model, a two-week CGP-2 treatment prevented tumor growth with 75% inhibition at 8 weeks, and this inhibition was still significant after 14 weeks. Unlike cyclopamine, CGP-2 had no detectable toxic effects in intestinal crypts. Our study suggests that inhibition of the Hedgehog pathway with CGP-2 is more effective than conventional temozolomide adjuvant, with much lower concentrations, and seems to be an effective therapeutic strategy for targeting GICs.
منابع مشابه
Small Molecule Therapeutics Selective Release of a Cyclopamine Glucuronide Prodrug toward Stem-like Cancer Cell Inhibition in Glioblastoma
Recent data suggest that inhibition of the Hedgehog pathway could be a therapeutic target for glioblastoma. Alkaloid cyclopamine inhibits Hedgehog signaling, depleting stem-like cancer cells derived from glioblastoma. However, this compound is toxic for somatic stem cells, preventing its use for clinical applications. In this study, we tested a derivatization product of cyclopamine in the form ...
متن کاملA new cyclopamine glucuronide prodrug with improved kinetics of drug release.
We prepared a new glucuronide prodrug of cyclopamine designed to target selectively the Hedgehog signalling pathway of cancer cells. This prodrug includes a novel self-immolative linker bearing a hydrophilic side chain that can be easily introduced via"click chemistry". With this design, the prodrug exhibits reduced toxicity compared to the free drug on U87 glioblastoma cells. However, in the p...
متن کاملCyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma.
Brain tumors can arise following deregulation of signaling pathways normally activated during brain development and may derive from neural stem cells. Given the requirement for Hedgehog in non-neoplastic stem cells, we investigated whether Hedgehog blockade could target the stem-like population in glioblastoma multiforme (GBM). We found that Gli1, a key Hedgehog pathway target, was highly expre...
متن کاملCyclopamine cooperates with EGFR inhibition to deplete stem-like cancer cells in glioblastoma-derived spheroid cultures.
Putative cancer stem cells have been identified in glioblastoma (GBM), associated with resistance to conventional therapies. Overcoming this resistance is a major challenge to manage this deadly brain tumor. Epidermal growth factor receptor (EGFR) is commonly amplified, over-expressed, and/or mutated in GBM, making it a compelling target for therapy. This study investigates the behavior of 3 pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 13 9 شماره
صفحات -
تاریخ انتشار 2014