DUP1 peptide modified micelle efficiently targeted delivery paclitaxel and enhance mitochondrial apoptosis on PSMA-negative prostate cancer cells
نویسندگان
چکیده
Prostate tumor cell targeted peptide fragment conjugated to the nano drug delivery system is a promising strategy for prostate cancer therapy. In this work, an amphiphilic copolymer Chol-PEG-DUP1 (PEG-cholesterol conjugated with DUP1 peptide) has been synthesized and characterized by proton nuclear magnetic resonance spectrum ((1)H NMR). The paclitaxel (PTX) was encapsulated into the Chol-PEG-DUP1 micelles to obtain aqueous formulation with small particle size (within 200 nm) and high drug encapsulating efficiency. The DUP1 modified PTX micelle significantly enhanced the cytotoxicity of paclitaxel to PSMA negative prostate tumor cells (PC-3 cell) as demonstrated by MTT (IC50 = 15.8 μg/mL compared to 68.7 μg/mL of free PTX). Flow cytometry analysis and fluorescence images revealed the DUP1 peptide fragments on the surface of micelles increased drug uptake (2.08-fold) by PC-3 cells. Flow cytometry and immunoblotting analysis showed the DUP1 modified PTX micelle enhanced the mitochondrial apoptosis-inducing capacity of PTX to PC-3 cells. In conclusion, Chol-PEG-DUP1 modified micelle was a reasonable, facile, and economic drug delivery system to target the PSMA-negative prostate cancer.
منابع مشابه
A Novel Prostate-Specific Membrane-Antigen (PSMA) Targeted Micelle-Encapsulating Wogonin Inhibits Prostate Cancer Cell Proliferation via Inducing Intrinsic Apoptotic Pathway
Prostate cancer (PCa) is a malignant tumor for which there are no effective treatment strategies. In this study, we developed a targeted strategy for prostate-specific membrane-antigen (PSMA)-positive PCa in vitro based on 2-(3-((S)-5-amino-1-carboxypentyl)ureido) pentanedioic acid (ACUPA) modified polyethylene glycol (PEG)-Cholesterol micelles containing wogonin (WOG), which was named ACUPA-M-...
متن کاملAmphipathic peptide-based fusion peptides and immunoconjugates for the targeted ablation of prostate cancer cells.
We describe the design, generation, and in vitro evaluation of targeted amphipathic fusion peptides and immunoconjugates for the ablation of prostate cancer cells. The overexpression of the prostate-specific membrane antigen (PSMA) was exploited as means to specifically deliver cytotoxic peptides to prostate cancer cells. Cationic amphipathic lytic peptides were chosen as cytotoxic agents due t...
متن کاملA Bi-Functional Targeted P28-NRC Chimeric Protein with Enhanced Cytotoxic Effects on Breast Cancer Cell Lines
One of the emerging therapeutic strategies for targeted therapy of cancer is the use of chimeric proteins. The p28 peptide has the ability of selective entrance and activating apoptosis in breast cancer cells. The NRC antimicrobial peptide showed cytotoxic activity on various breast cancer including drug-resistant variants but also normal cell lines. Here we designed a chimeric protein consiste...
متن کاملA Bi-Functional Targeted P28-NRC Chimeric Protein with Enhanced Cytotoxic Effects on Breast Cancer Cell Lines
One of the emerging therapeutic strategies for targeted therapy of cancer is the use of chimeric proteins. The p28 peptide has the ability of selective entrance and activating apoptosis in breast cancer cells. The NRC antimicrobial peptide showed cytotoxic activity on various breast cancer including drug-resistant variants but also normal cell lines. Here we designed a chimeric protein consiste...
متن کاملTargeted photodynamic therapy for prostate cancer: inducing apoptosis via activation of the caspase-8/-3 cascade pathway.
The limitation of specific delivery of photosensitizers to tumor sites, represents a significant shortcoming of photodynamic therapy (PDT) application at present. Prostate-specific membrane antigen (PSMA), a validated biomarker for prostate cancer, has attracted considerable attention as a target for imaging and therapeutic applications for prostate cancer. The present study focuses on the inve...
متن کامل