The Effect of Different Light-curing Units on Tensile Strength and Microhardness of a Composite Resin
نویسندگان
چکیده
The aim of this study was to evaluate the influence of different light-curing units on the tensile bond strength and microhardness of a composite resin (Filtek Z250 - 3M/ESPE). Conventional halogen (Curing Light 2500 - 3M/ESPE; CL) and two blue light emitting diode curing units (Ultraled - Dabi/Atlante; UL; Ultrablue IS - DMC; UB3 and UB6) were selected for this study. Different light intensities (670, 130, 300, and 600 mW/cm(2), respectively) and different curing times (20s, 40s and 60s) were evaluated. Knoop microhardness test was performed in the area corresponding to the fractured region of the specimen. A total of 12 groups (n=10) were established and the specimens were prepared using a stainless steel mold composed by two similar parts that contained a cone-shaped hole with two diameters (8.0 mm and 5.0 mm) and thickness of 1.0 mm. Next, the specimens were loaded in tensile strength until fracture in a universal testing machine at a crosshead speed of 0.5 mm/min and a 50 kg load cell. For the microhardness test, the same matrix was used to fabricate the specimens (12 groups; n=5). Microhardness was determined on the surfaces that were not exposed to the light source, using a Shimadzu HMV-2 Microhardness Tester at a static load of 50 g for 30 seconds. Data were analyzed statistically by two-way ANOVA and Tukey's test (p<0.05). Regarding the individual performance of the light-curing units, there was similarity in tensile strength with 20-s and 40-s exposure times and higher tensile strength when a 60-s light-activation time was used. Regarding microhardness, the halogen lamp had higher results when compared to the LED units. For all light-curing units, the variation of light-exposure time did not affect composite microhardness. However, lower irradiances needed longer light-activation times to produce similar effect as that obtained with high-irradiance light-curing sources.
منابع مشابه
Effect of different light curing methods on mechanical and physical properties of resin-cements polymerized through ceramic discs
OBJECTIVE The aim of this study was to compare the polimerization ability of three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) and their exposure modes (high-intensity and soft-start) by determination of microhardness, water sorption and solubility, and diametral tensile strength of 5 dual-curing resin cements. MATERIAL AND METHODS A total of 7...
متن کاملThe effect of curing intensity on mechanical properties of different bulk-fill composite resins
OBJECTIVE The purpose of this study was to investigate the effects of two curing light intensities on the mechanical properties (Vickers microhardness, compressive strength, and diametral tensile strength) of bulk-fill resin-based composites (RBCs). MATERIALS AND METHODS Four commercially available bulk-fill RBCs (Tetric® N-Ceram, SonicFill™, Smart Dentin Replacement (SDR™) Posterior Flowable...
متن کاملThe Effect of Irradiation Distance on Microhardness of Resin Composites Cured with Different Light Curing Units
OBJECTIVES The aim of this study was to compare the microhardness of five different resin composites at different irradiation distances (2 mm and 9 mm) by using three light curing units (quartz tungsten halogen, light emitting diodes and plasma arc). METHODS A total of 210 disc-shaped samples (2 mm height and 6 mm diameter) were prepared from different resin composites (Simile, Aelite Aesthet...
متن کاملتاثیر جهت نوردهی روی استحکام باند ریزکششی (Mircotensile) ادهزیوهای نسل پنجم و ششم
Background and Aims: Composite restorative materials and dental adhesives are usually cured with light sources. The light direction may influence the bond strength of dental adhesives. The aim of this study was to evaluate the effect of light direction on the microtensile bond strength of fifth and sixth generation dental adhesives.Materials and Methods: Prime & Bond NT and Clearfil SE bond wer...
متن کاملInfluence of light curing and sample thickness on microhardness of a composite resin
The aim of this in vitro study was to evaluate the influence of light-curing units and different sample thicknesses on the microhardness of a composite resin. Composite resin specimens were randomly prepared and assigned to nine experimental groups (n = 5): considering three light-curing units (conventional quartz tungsten halogen [QTH]: 550 mW/cm(2) - 20 s; high irradiance QTH: 1160 mW/cm(2) -...
متن کامل