A Toric Ring with Irrational Poincar E-betti Series

نویسندگان

  • Jan-Erik Roos
  • Bernd Sturmfels
چکیده

{ We show that there exists a toric curve in P 8 , whose homogeneous coordinate ring has a presentation with 12 quadratic relations and whose Poincar e-Betti series is irrational. The example was found by a computer search, aiming at a homological classiication of those toric curves that have a quadratic presentation in P n?1 for n 9. Some other consequences of this search are also presented. Un anneau toro dal a s erie de Poincar e-Betti irrationnelle R esum e.{ Nous montrons qu'il existe une courbe toro dale dans P 8 , dont l'anneau des coordonn ees ho-mog enes a une pr esentation avec 12 relations quadratiques, et dont la s erie de Poincar e-Betti est irrationnelle. Cet exemple a et e trouv e a l'aide d'une etude, faite sur ordinateur, dont le but a et e la classiication ho-mologique des courbes toro dales a relations quadratiques dans P n?1 pour n 9. D'autres cons equences de cette etude sont pr esent ees. Version frann caise abr eg ee | Soit M un sous-mono de de N d engendr e par n vecteurs a 1 ; : : :; a n ayant la m^ eme somme des coordonn ees. Soit k un corps. L'anneau toro dal kM] est la sous-alg ebre de l'anneau des polyn^ omes kz 1 ; : : :; z d ] engendr ee par les mon^ omes z ai = z ai1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segre Embeddings, Hilbert Series and Newcomb’s Problem

Monomial ideals and toric rings are closely related. By consider a Grobner basis we can always associated to any ideal I in a polynomial ring a monomial ideal in≺I, in some special situations the monomial ideal in≺I is square free. On the other hand given any monomial ideal I of a polynomial ring S, we can define the toric K[I] ⊂ S. In this paper we will study toric rings defined by Segre embed...

متن کامل

Free Resolutions of Lex-ideals over a Koszul Toric Ring

In this paper, we study the minimal free resolution of lex-ideals over a Koszul toric ring. In particular, we study in which toric ring R all lexideals are componentwise linear. We give a certain necessity and sufficiency condition for this property, and show that lex-ideals in a strongly Koszul toric ring are componentwise linear. In addition, it is shown that, in the toric ring arising from t...

متن کامل

The Chow ring of punctual Hilbert schemes on toric surfaces

Let X be a smooth projective toric surface, and H(X) the Hilbert scheme parametrising the length d zero-dimensional subschemes of X . We compute the rational Chow ring A(H(X))Q. More precisely, if T ⊂ X is the twodimensional torus contained in X , we compute the rational equivariant Chow ring AT (H (X))Q and the usual Chow ring is an explicit quotient of the equivariant Chow ring. The case of s...

متن کامل

HILBERT SCHEMES and MAXIMAL BETTI NUMBERS over VERONESE RINGS

We show that Macaulay’s Theorem, Gotzmann’s Persistence Theorem, and Green’s Theorem hold over a Veronese toric ring R. We also prove that the Hilbert scheme over R is connected; this is an analogue of Hartshorne’s theorem that the Hilbert scheme over a polynomial ring is connected. Furthermore, we prove that each lex ideal in R has the greatest Betti numbers among all graded ideals with the sa...

متن کامل

Rational Cohomology of the Real Coxeter Toric Variety of Type A

The toric variety corresponding to the Coxeter fan of type A can also be described as a De Concini–Procesi wonderful model. Using a general result of Rains which relates cohomology of real De Concini–Procesi models to poset homology, we give formulas for the Betti numbers of the real toric variety, and the symmetric group representations on the rational cohomologies. We also show that the ratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007