Model Checking in Tobit Regression Model via Nonparametric Smoothing

نویسندگان

  • SHAN LIU
  • Weixing Song
  • Shan Liu
چکیده

A nonparametric lack-of-fit test is proposed to check the adequacy of the presumed parametric form for the regression function in Tobit regression models by applying Zheng’s device with weighted residuals. It is shown that testing the null hypothesis for the standard Tobit regression models is equivalent to test a new null hypothesis of the classic regression models. An optimal weight function is identified to maximize the local power of the test. The test statistic proposed is shown to be asymptotically normal under null hypothesis, consistent against some fixed alternatives, and has nontrivial power for some local nonparametric power for some local nonparametric alternatives. The finite sample performance of the proposed test is assessed by Monte-Carlo simulations. An empirical study is conducted based on the data of University of Michigan Panel Study of Income Dynamics for the year 1975.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

Automatic Generalized Nonparametric Regression via Maximum Likelihood

A relatively recent development in nonparametric regression is the representation of spline-based smoothers as mixed model fits. In particular, generalized nonparametric regression (e.g. smoothingwith a binary response) corresponds to fitting a generalized linear mixedmodel. Automation, or data-driven smoothing parameter selection, can be achieved via (restricted) maximum likelihood estimation ...

متن کامل

Nonparametric Test for Checking Lack-of-Fit of Quantile Regression Model under Random Censoring

Recently, considerable attention has been devoted to quantile regression under random censoring in both statistical and econometrical literature yet little has been done on the important problem of model checking. This paper proposes a nonparametric test for checking the lack-of-fit of the quantile function of the survival time given the covariates when the survival time is subjected to random ...

متن کامل

A simple nonparametric test for diagnosing nonlinearity in Tobit median regression model

In many applications, the response variable is observed only when it is above or below a given threshold otherwise the threshold itself is observed. Tobit median regression model is a useful semiparametric procedure for analyzing this type of censored data. We propose a simple nonparametric test for assessing the common linearity assumption in this model. Compared to those existing methods in t...

متن کامل

A Bayesian Nonparametric Approach to Inference for Quantile Regression

We develop a Bayesian method for nonparametric model–based quantile regression. The approach involves flexible Dirichlet process mixture models for the joint distribution of the response and the covariates, with posterior inference for different quantile curves emerging from the conditional response distribution given the covariates. An extension to allow for partially observed responses leads ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012