Molecular cloning of a human fucosyltransferase gene that determines expression of the Lewis x and VIM-2 epitopes but not ELAM-1-dependent cell adhesion.
نویسندگان
چکیده
We have used the human Lewis blood group fucosyltransferase cDNA and cross-hybridization procedures to isolate a human gene that encodes a distinct fucosyltransferase. Its DNA sequence predicts a type II transmembrane protein whose sequence is identical to 133 of 231 amino acids at corresponding positions within the catalytic domain of the Lewis fucosyltransferase. When expressed by transfection in cultured cell lines, this gene determines expression of a fucosyltransferase capable of efficiently utilizing N-acetyllactosamine to form the Lewis x determinant (Gal beta 1----4[Fuc alpha 1----3]GlcNAc). By contrast, biochemical and flow cytometry analyses suggest that the enzyme cannot efficiently utilize the type II acceptor NeuNAc alpha 2----3Gal beta 1----4GlcNAc, to form the sialyl Lewis x determinant. In Chinese hamster ovary cells, however, the enzyme can determine expression of the alpha 2----3-sialylated, alpha 1----3-fucosylated structure known as VIM-2, a putative oligosaccharide ligand for ELAM-1. Cell adhesion assays using VIM-2-positive, sialyl Lewis x-negative transfected Chinese hamster ovary cells indicate that surface expression of the VIM-2 determinant is not sufficient to confer ELAM-1-dependent adhesive properties upon the cells. These results demonstrate that substantial structural similarities can exist between mammalian glycosyltransferases with closely related enzymatic properties, thus facilitating isolation of their cognate genes by cross-hybridization methods. The results further suggest that cell surface expression of the VIM-2 determinant is not necessarily sufficient to mediate ELAM-1-dependent cell adhesion.
منابع مشابه
ELAM-1--dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA.
Adhesion of circulating leukocytes to the vascular endothelium during inflammation is mediated in part by their interaction with the endothelial-leukocyte adhesion molecule ELAM-1. ELAM-1, a member of the LEC-CAM family of cell adhesion molecules, expresses an N-terminal carbohydrate recognition domain (CRD) homologous to various calcium-dependent mammalian lectins. However, the contribution of...
متن کاملConstruction and cloning of a recombinant expression vector containing human Cd20 Gene for antibody therapy in Non-Hodgkin Lymphoma
ABSTRACT Introduction: Non-Hodgkin lymphoma (NHL) is a cancer that starts in lymphocytes. The main treatment for NHL is chemotherapy and radiation. Today immunotherapy is a promising therapeutic approach in the treatment of a variety cancers which is high specific unlike previous methods. Antibodies do not penetrate effectively into tumore tissues because of their large size. Whe...
متن کاملExpression of human alpha(1,3)fucosyltransferase antisense sequences inhibits selectin-mediated adhesion and liver metastasis of colon carcinoma cells.
The initial steps of leukocyte and tumor cell adhesion involve selectin receptor/ligand interactions. The selectin ligand components sialyl Lewis x and sialyl Lewis a are oncodevelopmental antigens involved in progression of adenocarcinoma. Interrupting biosynthesis of these surface glycans by inhibition of alpha(1,3)fucosyltransferase (FUT) gene expression is an attractive goal for functional ...
متن کاملSimulated Microgravity Condition Alters the Gene Expression of some ECM and Adhesive Molecules in Adipose-Derived Stem Cells
Adipose-derived stem cells (ADSCs) are widely used for tissue engineering and regenerative medicine. The beneficial effects of ADSCs on wound healing have already been reported. Remodeling of extracellular matrix (ECM) is the most important physiological event during the wound healing. ECM is sensitive to mechanical stresses and the expression of its components can be therefore influenced. The ...
متن کاملCloning, molecular analysis and epitopics prediction of a new chaperone GroEL Brucella melitensis antigen
Objective(s):Brucellosis is a well-known domestic animal infectious disease, which is caused by Brucella bacterium. GroEL antigen increases Brucella survival and is one of the major antigens that stimulates the immune system. Hence, the objective of the present study was cloning and bioinformatics analysis of GroEL gene. Materials and Methods: The full-length open reading frame of this gene was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 266 26 شماره
صفحات -
تاریخ انتشار 1991