Susceptibility of CoFeB/AlOx/Co Magnetic Tunnel Junctions to Low-Frequency Alternating Current

نویسندگان

  • Yuan-Tsung Chen
  • Zu-Gao Chang
چکیده

This investigation studies CoFeB/AlOx/Co magnetic tunneling junction (MTJ) in the magnetic field of a low-frequency alternating current, for various thicknesses of the barrier layer AlOx. The low-frequency alternate-current magnetic susceptibility (χac) and phase angle (θ) of the CoFeB/AlOx/Co MTJ are determined using an cac analyzer. The driving frequency ranges from 10 to 25,000 Hz. These multilayered MTJs are deposited on a silicon substrate using a DC and RF magnetron sputtering system. Barrier layer thicknesses are 22, 26, and 30 Å. The X-ray diffraction patterns (XRD) include a main peak at 2θ = 44.7° from hexagonal close-packed (HCP) Co with a highly (0002) textured structure, with AlOx and CoFeB as amorphous phases. The full width at half maximum (FWHM) of the Co(0002) peak, decreases as the AlOx thickness increases; revealing that the Co layer becomes more crystalline with increasing thickness. χac result demonstrates that the optimal resonance frequency (fres) that maximizes the χac value is 500 Hz. As the frequency increases to 1000 Hz, the susceptibility decreases rapidly. However, when the frequency increases over 1000 Hz, the susceptibility sharply declines, and almost closes to zero. The experimental results reveal that the mean optimal susceptibility is 1.87 at an AlOx barrier layer thickness of 30 Å because the Co(0002) texture induces magneto-anisotropy, which improves the indirect CoFeB and Co spin exchange-coupling strength and the χac value. The results concerning magnetism indicate that the magnetic characteristics are related to the crystallinity of Co.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Low-Frequency AC Magnetic Susceptibility and Magnetic Properties of CoFeB/MgO/CoFeB Magnetic Tunnel Junctions

In this investigation, the low-frequency alternate-current (AC) magnetic susceptibility (χac) and hysteresis loop of various MgO thickness in CoFeB/MgO/CoFeB magnetic tunneling junction (MTJ) determined coercivity (Hc) and magnetization (Ms) and correlated that with χac maxima. The multilayer films were sputtered onto glass substrates and the thickness of intermediate barrier MgO layer was vari...

متن کامل

Investigation of metallic/oxide interfaces in Pt/Co/AlOx trilayers by hard x-ray reflectivity

X-ray reflectivity (XRR) is used to determine the oxidation front at the nanometer scale in sputtered perpendicular semi tunnel junctions, as the form Pt/Co/AlOx, by varying the oxidation time tOx of the capping layer. From XRR simulations, we show that the nature of the stack is gradually defined according to the value of tOx. For low tOx values (<40 s), a simple Pt/Co/Al/AlOx multilayer is ap...

متن کامل

A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction.

Magnetic tunnel junctions (MTJs) with ferromagnetic electrodes possessing a perpendicular magnetic easy axis are of great interest as they have a potential for realizing next-generation high-density non-volatile memory and logic chips with high thermal stability and low critical current for current-induced magnetization switching. To attain perpendicular anisotropy, a number of material systems...

متن کامل

Noise in MgO barrier magnetic tunnel junctions with CoFeB electrodes: Influence of annealing temperature

Low frequency noise has been measured in magnetic tunnel junctions with MgO barriers and magnetoresistance values up to 235%. The authors investigated the noise for different degrees of crystallization and CoFeB/MgO interface quality depending on the annealing temperature. The authors report an extremely low 1/ f noise, compared to magnetic junctions with Al2O3 barriers. The origin of the low f...

متن کامل

Origin of easy magnetization switching in magnetic tunnel junctions with voltage-controlled interfacial anisotropy

Spin-polarized currents represent an efficient tool for manipulating ferromagnetic nanostructures but the critical current density necessary for the magnetization switching is usually too high for applications. Here we show theoretically that, in magnetic tunnel junctions having electric-field-dependent interfacial anisotropy, the critical density may reduce down to a very low level (~10(4) A c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013