Quantifying spatial heterogeneity at the landscape scale using variogram models
نویسندگان
چکیده
The monitoring of earth surface dynamic processes at a global scale requires high temporal frequency remote sensing observations which are provided up to now by moderate spatial resolution sensors. However, the spatial heterogeneity within the moderate spatial resolution pixel biases non-linear estimation processes of land surface variables from remote sensing data. To limit its influence on the description of land surface processes, corrections based on the quantification of the intra-pixel heterogeneity may be applied to non-linear estimation processes. A complementary strategy is to define the proper pixel size to capture the spatial variability of the data and minimize the intra-pixel variability. This work provides a methodology to characterize and quantify the spatial heterogeneity of landscape vegetation cover from the modeling of the variogram of high spatial resolution NDVI data. NDVI variograms for 18 landscapes extracted from the VALERI database show that the land use is the main factor of spatial variability as quantified by the variogram sill. Crop sites are more heterogeneous than natural vegetation and forest sites at the landscape level. The integral range summarizes all structural parameters of the variogram into a single characteristic area. Its square root quantifies the mean length scale (i.e. spatial scale) of the data, which varies between 216 and 1060 m over the 18 landscapes considered. The integral range is also used as a yardstick to judge if the size of an image is large enough to measure properly the length scales of the data with the variogram. We propose that it must be smaller than 5% of the image surface. The theoretical dispersion variance, computed from the variogram model, quantifies the spatial heterogeneity within a moderate resolution pixel. It increases rapidly with pixel size until this size is larger than the mean length scale of the data. Finally based on the analysis of 18 landscapes, the sufficient pixel size to capture the major part of the spatial variability of the vegetation cover at the landscape scale is estimated to be less than 100 m. Since for all the heterogeneous landscapes the loss of NDVI spatial variability was small at this spatial resolution, the bias generated by the intra-pixel spatial heterogeneity on non-linear estimation processes will be reduced. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Comparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملIntegration of Landscape Metrics and Variograms to Characterize and Quantify the Spatial Heterogeneity Change of Vegetation Induced by the 2008 Wenchuan Earthquake
The quantification of spatial heterogeneity can be used to examine the structure of ecological systems. The 2008 Wenchuan earthquake caused severe vegetation damage. In addition to simply detecting change, the magnitude of changes must also be examined. Remote sensing and geographic information system techniques were used to produce landscape maps before and after the earthquake and analyze the...
متن کاملApplication of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium)
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex ...
متن کاملRemote Sensing Data with the Conditional Latin Hypercube Sampling and Geostatistical Approach to Delineate Landscape Changes Induced by Large Chronological Physical Disturbances
This study applies variogram analyses of normalized difference vegetation index (NDVI) images derived from SPOT HRV images obtained before and after the ChiChi earthquake in the Chenyulan watershed, Taiwan, as well as images after four large typhoons, to delineate the spatial patterns, spatial structures and spatial variability of landscapes caused by these large disturbances. The conditional L...
متن کاملBayesian area-to-point kriging using expert knowledge as informative priors
Spatial disagregation is needed when environmental models of climate, air quality, hydrology, etc. require input data at a finer scale than available or when models produce outputs at a coarser scale than required by users. Area-to-Point Kriging is a common geostatistical framework to address the problem of spatial disaggregation from block to point support. Spatial disaggregation using Area-to...
متن کامل