Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries
نویسندگان
چکیده
The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. The scope of this review includes the monovalent lithiumand sodium-ion chemistries that are currently of the most commercial interest. NPG Asia Materials (2016) 8, e254; doi:10.1038/am.2016.7; published online 25 March 2016
منابع مشابه
Aqueous Stability of Alkali Superionic Conductors from First-Principles Calculations
Ceramic alkali superionic conductor solid electrolytes (SICEs) play a prominent role in the development of rechargeable alkali-ion batteries, ranging from replacement of organic electrolytes to being used as separators in aqueous batteries. The aqueous stability of SICEs is an important property in determining their applicability in various roles. In this work, we analyze the aqueous stability ...
متن کاملIR, Raman, and NMR studies of the short-range structures of 0.5Na2S + 0.5[xGeS2 + (1-x)PS(5/2)] mixed glass-former glasses.
A nonlinear and nonadditive composition-dependent change of the ionic conductivity in mixed glass-former (MGF) glasses when one glass former, such as PS(5/2), is replaced by a second glass former, such as GeS2, at constant alkali modifier concentrations, such as Na2S, is known as the mixed glass-former effect (MGFE). Alkali ion conducting glasses are of particular interest for use as solid elec...
متن کاملP2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries
Most P2-type layered oxides exhibit Na(+)/vacancy-ordered superstructures because of strong Na(+)-Na(+) interaction in the alkali metal layer and charge ordering in the transition metal layer. These superstructures evidenced by voltage plateaus in the electrochemical curves limit the Na(+) ion transport kinetics and cycle performance in rechargeable batteries. Here we show that such Na(+)/vacan...
متن کاملAdvanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials
Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi-electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery syst...
متن کاملSuperionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries.
Innovative rechargeable batteries that can effectively store renewable energy, such as solar and wind power, urgently need to be developed to reduce greenhouse gas emissions. All-solid-state batteries with inorganic solid electrolytes and electrodes are promising power sources for a wide range of applications because of their safet...
متن کامل