Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer
نویسندگان
چکیده
Systemic administration of chemotherapy for cancer often has toxic side effects, limiting the doses that can be used in its treatment. In this study, we developed methoxy poly(ethylene glycol)-poly(caprolactone) (MPEG-PCL) micelles loaded with curcumin and doxorubicin (Cur-Dox/MPEG-PCL) that were tolerated by recipient mice and had enhanced antitumor effects and fewer side effects. It was shown that these Cur-Dox/MPEG-PCL micelles could release curcumin and doxorubicin slowly in vitro. The long circulation time of MPEG-PCL micelles and the slow rate of release of curcumin and doxorubicin in vivo may help to maintain plasma concentrations of active drug. We also demonstrated that Cur-Dox/MPEG-PCL had improved antitumor effects both in vivo and in vitro. The mechanism by which Cur-Dox/MPEG-PCL micelles inhibit lung cancer might involve increased apoptosis of tumor cells and inhibition of tumor angiogenesis. We found advantages using Cur-Dox/MPEG-PCL micelles in the treatment of cancer, with Cur-Dox/MPEG-PCL achieving better inhibition of LL/2 lung cancer growth in vivo and in vitro. Our study indicates that Cur-Dox/MPEG-PCL micelles may be an effective treatment strategy for cancer in the future.
منابع مشابه
Self-assembled mPEG–PCL-g–PEI micelles for simultaneous codelivery of chemotherapeutic drugs and DNA: synthesis and characterization in vitro
BACKGROUND In this paper, a series of amphiphilic triblock copolymers based on polyethylene glycol-poly ɛ-caprolactone-polyethylenimine (mPEG-PCL-g-PEI) were successfully synthesized, and their application for codelivery of chemotherapeutic drugs and DNA simultaneously was investigated. METHODS AND RESULTS These copolymers could self-assemble into micelles with positive charges. The size and ...
متن کاملA Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin
Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirab...
متن کاملZnO nanofluids for the improved cytotoxicity and cellular uptake of doxorubicin
Objective(s): Combination anticancer therapy holds promise for improving the therapeutic efficacy of chemotherapy drugs such as doxorubicin (DOX) as well as decreasing their dose-limiting side effects. Overcoming the side effects of doxorubicin (DOX) is a major challenge to the effective treatment of cancer. Zinc oxide nanoparticles (ZnO NPs) are emerging as potent tools for a wide variety of b...
متن کاملP-145: Efficacy of Simvasiatin in The Prevention of Doxorubicin-Induced Testicular Morphometric-Stereological Alterations in Mice
Background: Doxorubicin (DOX), a widely used antineoplastic compound, is associated with testicular damage and infertility. In this study, we intended to determine the possible preventive effects of simvastatin (SIM), a lipid lowering agent with antioxidant and anti-inflammatory activities, on testicular morphometric-stereological changes due to DOX treatment in mice. Materials and Methods: Mal...
متن کاملCisplatin-loaded superparamagnetic nanoparticles modified with PCL-PEG copolymers as a treatment of A549 lung cancer cells
Magnetic nanoparticles have been highly regarded because of their unique properties, such as hyperthermia, medicine control release, and diagnostic applications. The main aim of the current paper is to offer a new system for the modification of Fe3O4 (SPIONs) superparamagnetic nanoparticles physically and chemically with polymers through physical retention. These modified nanoparticles have bee...
متن کامل