A framework for using multiple classi ers in a multiple

نویسنده

  • Louis Vuurpijl
چکیده

This paper describes a new framework using intelligent agents for pattern recognition. A justiication for using alternatives to current classiier systems is given. The use of the framework, called iart, is tested on a digit recognition system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Selection of Image Classifiers

Recently, the concept of \Multiple Classi er Systems" was proposed as a new approach to the development of high performance image classi cation systems. Multiple Classi er Systems can be used to improve classi cation accuracy by combining the outputs of classi ers making \uncorrelated" errors. Unfortunately, in real image recognition problems, it may be very di cult to design an ensemble of cla...

متن کامل

Soft combination of neural classifiers: A comparative study

This paper presents four schemes for soft fusion of the outputs of multiple classi®ers. In the ®rst three approaches, the weights assigned to the classi®ers or groups of them are data dependent. The ®rst approach involves the calculation of fuzzy integrals. The second scheme performs weighted averaging with data-dependent weights. The third approach performs linear combination of the outputs of...

متن کامل

Use of multiple classifiers for speech recognition in wireless CDMA network environments

In this paper, we address the problem and the use of multiple classi ers for robust recognition over the cellular network. The idea is to provide more variability to the system to be trained, and to support this variability with more number of model parameters. The main drawback is that the model size, and the computational complexity increases linearly related to di erent call environment. To ...

متن کامل

Combining Nearest Neighbor Classifiers Through Multiple Feature Subsets

Combining multiple classi ers is an e ective technique for improving accuracy. There are many general combining algorithms, such as Bagging or Error Correcting Output Coding, that signi cantly improve classi ers like decision trees, rule learners, or neural networks. Unfortunately, many combining methods do not improve the nearest neighbor classi er. In this paper, we present MFS, a combining a...

متن کامل

Combining multiple OCRs for optimizing word recognition

In this paper we present a method of combining multiple classi ers for optimizing word recognition As opposed to existing techniques for combining multiple OCRs where the combination scheme is selected by either using some heuristics or using a character level training procedure the proposed method combines the results of indi vidual classi ers in such a way that the correct word is more likely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998