A phenomenological model for the degradation of polymeric tissue engineering scaffolds
نویسندگان
چکیده
Biodegradable polymers have great number of applications in modern reconstructive medicine and orthopaedics. One of them is manufacturing of tissue engineering scaffolds, which are potential analogues of bone grafts. Bone scaffolds are commonly used to support reconstruction of tissue losses caused by injury or disease. The main goal of using the tissue engineered scaffolds is to maintain the mechanical function of injured tissue. Bone scaffolds are made as porous structures with interconnected pores. During the regenerative process implanted scaffold is subjected to degradation. Polymer matrix should be replaced by regenerated tissue. It is crucial to predict the degradation behaviour of biopolymer because of fact that its mechanical properties are function of its degradation properties. In the paper numerical model of aliphatic polyester degradation in aqueous medium are presented and adopted for prediction of degradation behaviour of bone scaffolds.
منابع مشابه
Preparation and characterization of PCL polymeric scaffolds coated with chitosan/ bioactive glass/gelatin nanoparticles using the tips methodology for bone tissue engineering
Objective(s): The present study aimed to prepare polycaprolactone (PCL) scaffolds with high porosity and pore interconnectivity, in order to copy the microstructure of natural bones using the thermally induced phase separation (TIPS) technique. Materials and Methods: The scaffolds were coated with chitosan (CH), bioactive glass (BG), and gelatin nanoparticles (GEL NPs) and assessed using ...
متن کاملHydroxyapatite-Hardystonite nanocomposite scaffolds prepared by the replacing the polyurethane polymeric sponge technique for tissue engineering applications
Objective (s): Silicate bioceramics containing Zn and Ca like hardystonite (Hr) with chemical formula Ca2ZnSi2O7 has attracted the attention of researchers in biomedical field due to its remarkable biological and mechanical properties. The new generation of bioceramics can applied in bone tissue engineering to substitute with infected bone. However, these zirconium-silicate bioceramics have pro...
متن کاملMathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.
The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a funda...
متن کاملElectrospinning Nanofibers Gelatin scaffolds: Nanoanalysis of properties and optimizing the process for tissue engineering functional
Electrospinning has been recognized as an efficient technique for the fabrication of polymernanofibers. Recently, various polymers have successfully been electrospun into ultrafine fibers.Electrospinning is an extremely promising method for the preparation of tissue engineering scaffolds.In this study, nanofibers gelatin was electrospun at 20% v/v optimized content. To produce...
متن کاملIn vitro behavior of silk fibroin-coated calcium magnesium silicate scaffolds
Bioceramic scaffolds such as silicate bioceramics have been widely used for bone tissue engineering. However, their high degradation rate, low mechanical strength and surface instability are main challenges compromising their bioactivity and cytocompatibility which further negatively affect the cell growth and attachment. In this study, we have investigated the effects of silk fibroin coating o...
متن کامل