Axonal transport and transcellular transfer of nucleosides and polyamines in intact and regenerating optic nerves of goldfish: speculation on the axonal regulation of periaxonal cell metabolism.

نویسندگان

  • N A Ingoglia
  • S C Sharma
  • J Pilchman
  • K Baranowski
  • J A Sturman
چکیده

The axonal transport, metabolism, and transcellular transfer of uridine, adenosine, putrescine, and spermidine have been examined in intact and regenerating optic nerves of goldfish. Following intraocular injection of labeled nucleosides, axonal transport was determined by comparing left-right differences in tectal radioactivity, and transcellular transfer was indicated by light autoradiographic analysis. The results demonstrated axonal transport, transcellular transfer, and periaxonal cell utilization of both nucleosides in intact axons and severalfold increases of all of these processes in regenerating axons. Experiments in which the metabolism of the nucleosides was studied resulted in data which suggested that uridine and adenosine, when delivered to the tectum by axonal transport, are protected from degradation and thus are relatively more available for periaxonal cell utilization than nucleosides reaching these cells via the blood. In intact axons, the majority of the nonmetabolized radioactivity was present as UMP, UDP, and UTP following [3H]uridine injections, whereas the majority of the radioactivity following [3H]adenosine injections was present as adenosine, with the phosphorylated derivatives constituting a smaller proportion. During nerve regeneration, the relative proportion of nucleosides to nucleotides was reversed, with uridine being the principal labeled compound in the first case, and AMP, ADP, and ATP being the major labeled compounds in the latter case. The nucleosides also were found to be different from each other in that adenosine, but not uridine, can be taken up by optic axons and transported retrogradely from the tectum to retinal ganglion cell bodies in the eye. Following intraocular injection of [3H]spermidine, radioactivity was transported to the optic tectum and transferred to tectal cells in the vicinity of the regenerating axons. Following [3H]putrescine injections, silver grains were found over periaxonal glia, but preliminary findings suggest that they are not present over tectal neurons nor over radial glial cells in the periependymal layers. Analysis of tectal radioactivity showed in each case that it was composed primarily of the injected compounds. These studies indicate that, following axonal transport, the polyamines do not remain within regenerating axons but are transferred to cells surrounding the axon. On the basis of these and previous findings, we speculate that the axonal transport and transcellular transfer of uridine, adenosine, polyamines, and perhaps other small molecules are means of communication between axons and periaxonal cells; that the axon can affect RNA and protein synthesis in periaxonal cells by regulating the availability of these small molecules; and that, during nerve regeneration, the increased metabolic needs of periaxonal cells are met by an increased axonal supply of precursors (adenosine and uridine) and other molecules (polyamines) critical for protein synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosynthesis and intra-axonal transport of proteins during neuronal regeneration.

Intraocular injections of radiolabeled amino acids permitted the study of protein biosynthesis in goldfish retinal ganglion cells and the distribution of this material to the synapse via intra-axonal transport, during regeneration of the fish visual system. There is a 3-fold increase in amino acid incorporated within the ganglion cell layer compared to intact contralateral controls by 10 days a...

متن کامل

Rna in Regenerating Optic Axons of Goldfish1

Previous experiments have demonstrated that 4 S RNA is transported axonally during the reconnection period of optic nerve regeneration in goldfish. The present experiments were performed to determine whether 4 S RNA is transported axonally during later, maturational stages of nerve regeneration and to examine some of the characteristics of 4 S RNA in regenerating axons. [“H]Uridine was injected...

متن کامل

The effect of endurance training on dynein motor protein expression in Wistar male rats sciatic nerves with diabetic neuropathy

Introduction: Most neurodegenerative diseases are associated with the disruption of axonal transport and this might also be related to diabetes-associated disorders affecting the nervous system. Cytoplasmic dynein is a very important motor driving the movement of a wide range of cargoes toward the minus ends of microtubules. The effects of endurance training on dynein motor protein expression i...

متن کامل

Diabetic Encephalopathy Affects Mitochondria and Axonal Transport Proteins

Introduction: Diabetic encephalopathy is described as any cognitive and memory impairments and associated with hippocampal degenerative changes, include neurodegenerative process and decreased number of living cell. Mitochondrial Diabetes (MD) appears fallowing activation of mutant mitochondrial DNA and is combination of diabetes and cognitive deficit. In this research we showed the correlation...

متن کامل

Target recognition and dynamics of axonal growth in the retinotectal system of fish.

Embryonic and regenerating retinal axons in fish are able to seek out their retinotopic target sites in the tectum. Neither a specific preordering of axons in the retinotectal pathway nor activity-dependent axon-target interactions are required for appropriate axonal targeting. Axon-target recognition appears to be predominantly mediated by positional cell surface markers. The discrimination of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 2 10  شماره 

صفحات  -

تاریخ انتشار 1982