Column Sampling Based Discrete Supervised Hashing
نویسندگان
چکیده
By leveraging semantic (label) information, supervised hashing has demonstrated better accuracy than unsupervised hashing in many real applications. Because the hashing-code learning problem is essentially a discrete optimization problem which is hard to solve, most existing supervised hashing methods try to solve a relaxed continuous optimization problem by dropping the discrete constraints. However, these methods typically suffer from poor performance due to the errors caused by the relaxation. Some other methods try to directly solve the discrete optimization problem. However, they are typically time-consuming and unscalable. In this paper, we propose a novel method, called column sampling based discrete supervised hashing (COSDISH), to directly learn the discrete hashing code from semantic information. COSDISH is an iterative method, in each iteration of which several columns are sampled from the semantic similarity matrix and then the hashing code is decomposed into two parts which can be alternately optimized in a discrete way. Theoretical analysis shows that the learning (optimization) algorithm of COSDISH has a constant-approximation bound in each step of the alternating optimization procedure. Empirical results on datasets with semantic labels illustrate that COSDISH can outperform the state-of-the-art methods in real applications like image retrieval.
منابع مشابه
Deep Discrete Supervised Hashing
Hashing has been widely used for large-scale search due to its low storage cost and fast query speed. By using supervised information, supervised hashing can significantly outperform unsupervised hashing. Recently, discrete supervised hashing and deep hashing are two representative progresses in supervised hashing. On one hand, hashing is essentially a discrete optimization problem. Hence, util...
متن کاملDeep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss
Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...
متن کاملKernel-Based Supervised Discrete Hashing for Image Retrieval
Recently hashing has become an important tool to tackle the problem of large-scale nearest neighbor searching in computer vision. However, learning discrete hashing codes is a very challenging task due to the NP hard optimization problem. In this paper, we propose a novel yet simple kernel-based supervised discrete hashing method via an asymmetric relaxation strategy. Specifically, we present a...
متن کاملFast Supervised Discrete Hashing and its Analysis
In this paper, we propose a learning-based supervised discrete hashing method. Binary hashing is widely used for large-scale image retrieval as well as video and document searches because the compact representation of binary code is essential for data storage and reasonable for query searches using bit-operations. The recently proposed Supervised Discrete Hashing (SDH) efficiently solves mixed-...
متن کاملOrdinal Constrained Binary Code Learning for Nearest Neighbor Search
Recent years have witnessed extensive attention in binary code learning, a.k.a. hashing, for nearest neighbor search problems. It has been seen that high-dimensional data points can be quantized into binary codes to give an efficient similarity approximation via Hamming distance. Among existing schemes, ranking-based hashing is recent promising that targets at preserving ordinal relations of ra...
متن کامل