Quantitative genetic models for describing simultaneous and recursive relationships between phenotypes.
نویسندگان
چکیده
Multivariate models are of great importance in theoretical and applied quantitative genetics. We extend quantitative genetic theory to accommodate situations in which there is linear feedback or recursiveness between the phenotypes involved in a multivariate system, assuming an infinitesimal, additive, model of inheritance. It is shown that structural parameters defining a simultaneous or recursive system have a bearing on the interpretation of quantitative genetic parameter estimates (e.g., heritability, offspring-parent regression, genetic correlation) when such features are ignored. Matrix representations are given for treating a plethora of feedback-recursive situations. The likelihood function is derived, assuming multivariate normality, and results from econometric theory for parameter identification are adapted to a quantitative genetic setting. A Bayesian treatment with a Markov chain Monte Carlo implementation is suggested for inference and developed. When the system is fully recursive, all conditional posterior distributions are in closed form, so Gibbs sampling is straightforward. If there is feedback, a Metropolis step may be embedded for sampling the structural parameters, since their conditional distributions are unknown. Extensions of the model to discrete random variables and to nonlinear relationships between phenotypes are discussed.
منابع مشابه
The Application of Recursive Mixed Models for Estimating Genetic and Phenotypic Relationships between Calving Difficulty and Lactation Curve Traits in Iranian Holsteins: A Comparison with Standard Mixed Models
In the present study, records on 22872 first-parity Holsteins collected from 131 herds by the Animal Breeding and Improvement Center of Iran from 1995 to 2014 were considered to estimate genetic and phenotypic relationships between calving difficulty (CD) and the lactation curve traits, including initial milk yield (Ap), ascending (Bp) and descending (Cp) slope of the lactation curves, peak mil...
متن کاملSearching for recursive causal structures in multivariate quantitative genetics mixed models.
Biology is characterized by complex interactions between phenotypes, such as recursive and simultaneous relationships between substrates and enzymes in biochemical systems. Structural equation models (SEMs) can be used to study such relationships in multivariate analyses, e.g., with multiple traits in a quantitative genetics context. Nonetheless, the number of different recursive causal structu...
متن کاملRelationships between milk yield and somatic cell score in Canadian Holsteins from simultaneous and recursive random regression models.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regress...
متن کاملGaussian graphical models for phenotypes using pedigree data and exploratory analysis using networks with genetic and nongenetic factors based on Genetic Analysis Workshop 18 data
Graphical models are increasingly used in genetic analyses to take into account the complex relationships between genetic and nongenetic factors influencing the phenotypes. We propose a model for determining the network structure of quantitative traits while accounting for the correlated nature of the family-based samples using the kinship coefficient. The Gaussian graphical model of age, systo...
متن کاملاهمیت خویشاوندی ژنتیکی و رکورد فنوتیپی بر صحت ژنومی دادههای جانهی شبیه سازی شده با استفاده از مدل های حیوانی در حضور اثرات متقابل ژنوتیپ و محیط
The objective of this study was to investigate the role of genetic relationships between training and validation set with considering different ratio of phenotypic records of training set on accuracy of genomic prediction via animal models containing genotype × environment interactions in simulated imputation data. For this purpose, four different scenarios using 15k density containing differen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 167 3 شماره
صفحات -
تاریخ انتشار 2004