Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins.

نویسندگان

  • Michelle C Moffitt
  • Brett A Neilan
چکیده

Nodularia spumigena is a bloom-forming cyanobacterium which produces the hepatotoxin nodularin. The complete gene cluster encoding the enzymatic machinery required for the biosynthesis of nodularin in N. spumigena strain NSOR10 was sequenced and characterized. The 48-kb gene cluster consists of nine open reading frames (ORFs), ndaA to ndaI, which are transcribed from a bidirectional regulatory promoter region and encode nonribosomal peptide synthetase modules, polyketide synthase modules, and tailoring enzymes. The ORFs flanking the nda gene cluster in the genome of N. spumigena strain NSOR10 were identified, and one of them was found to encode a protein with homology to previously characterized transposases. Putative transposases are also associated with the structurally related microcystin synthetase (mcy) gene clusters derived from three cyanobacterial strains, indicating a possible mechanism for the distribution of these biosynthetic gene clusters between various cyanobacterial genera. We propose an alternative hypothesis for hepatotoxin evolution in cyanobacteria based on the results of comparative and phylogenetic analyses of the nda and mcy gene clusters. These analyses suggested that nodularin synthetase evolved from a microcystin synthetase progenitor. The identification of the nodularin biosynthetic gene cluster and evolution of hepatotoxicity in cyanobacteria reported in this study may be valuable for future studies on toxic cyanobacterial bloom formation. In addition, an appreciation of the natural evolution of nonribosomal biosynthetic pathways will be vital for future combinatorial engineering and rational design of novel metabolites and pharmaceuticals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the presence of peptide synthetase and polyketide synthase genes in the cyanobacterial genus Nodularia.

Nodularin is a hepatotoxin produced by the bloom-forming cyanobacterial species Nodularia spumigena. Putative peptide synthetase and polyketide synthase genes were detected in toxic strains of Nodularia by degenerate PCR. Using specific primer sets, peptide synthetase and polyketide synthase gene homologues were detected in nodularin-producing strains indicating a possible role of peptide synth...

متن کامل

The adsorption of cyanobacterial hepatoxins as a function of soil properties.

Cyanobacterial hepatotoxins present a risk to public health when present in drinking water supplies. Existing removal strategies, although efficient, are not economically viable or practical for remote Australian communities and developing nations. Bank filtration is a natural process and a potential low cost, toxin removal strategy. Batch studies were conducted in 12 texturally diverse soils t...

متن کامل

Production of High Amounts of Hepatotoxin Nodularin and New Protease Inhibitors Pseudospumigins by the Brazilian Benthic Nostoc sp. CENA543

Nostoc is a cyanobacterial genus, common in soils and a prolific producer of natural products. This research project aimed to explore and characterize Brazilian cyanobacteria for new bioactive compounds. Here we report the production of hepatotoxins and new protease inhibitors from benthic Nostoc sp. CENA543 isolated from a small, shallow, saline-alkaline lake in the Nhecolândia, Pantanal wetla...

متن کامل

Cyanobacteria produce a high variety of hepatotoxic peptides in lichen symbiosis.

Lichens are symbiotic associations between fungi and photosynthetic algae or cyanobacteria. Microcystins are potent toxins that are responsible for the poisoning of both humans and animals. These toxins are mainly associated with aquatic cyanobacterial blooms, but here we show that the cyanobacterial symbionts of terrestrial lichens from all over the world commonly produce microcystins. We scre...

متن کامل

Nodularia spumigena Peptides—Accumulation and Effect on Aquatic Invertebrates

Thus far, the negative effects of Nodularia spumigena blooms on aquatic organisms have been mainly attributed to the production of the hepatotoxic nodularin (NOD). In the current work, the accumulation of other N. spumigena metabolites in blue mussels and crustaceans, and their effect on Thamnocephalus platyurus and Artemia franciscana, were examined. The liquid chromatography-tandem mass spect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 70 11  شماره 

صفحات  -

تاریخ انتشار 2004