Regularization with Dot-Product Kernels

نویسندگان

  • Alexander J. Smola
  • Zoltán L. Óvári
  • Robert C. Williamson
چکیده

In this paper we give necessary and sufficient conditions under which kernels of dot product type k(x, y) = k(x · y) satisfy Mercer’s condition and thus may be used in Support Vector Machines (SVM), Regularization Networks (RN) or Gaussian Processes (GP). In particular, we show that if the kernel is analytic (i.e. can be expanded in a Taylor series), all expansion coefficients have to be nonnegative. We give an explicit functional form for the feature map by calculating its eigenfunctions and eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning the Kernel Function via Regularization

We study the problem of finding an optimal kernel from a prescribed convex set of kernels K for learning a real-valued function by regularization. We establish for a wide variety of regularization functionals that this leads to a convex optimization problem and, for square loss regularization, we characterize the solution of this problem. We show that, although K may be an uncountable set, the ...

متن کامل

Kernels for Multi--task Learning

This paper provides a foundation for multi–task learning using reproducing kernel Hilbert spaces of vector–valued functions. In this setting, the kernel is a matrix–valued function. Some explicit examples will be described which go beyond our earlier results in [7]. In particular, we characterize classes of matrix– valued kernels which are linear and are of the dot product or the translation in...

متن کامل

Random Feature Maps for Dot Product Kernels

Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic anal...

متن کامل

From Regularization Operators to Support Vector Kernels

We derive the correspondence between regularization operators used in Regularization Networks and Hilbert Schmidt Kernels appearing in Support VectorMachines. More specifically, we prove that the Green’s Functions associated with regularization operators are suitable Support Vector Kernels with equivalent regularization properties. As a by–product we show that a large number of Radial Basis Fun...

متن کامل

The connection between regularization operators and support vector kernels

In this paper a correspondence is derived between regularization operators used in regularization networks and support vector kernels. We prove that the Green's Functions associated with regularization operators are suitable support vector kernels with equivalent regularization properties. Moreover, the paper provides an analysis of currently used support vector kernels in the view of regulariz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000